8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Comparison of Burst and Tonic Spinal Cord Stimulation on Spinal Neural Processing in an Animal Model : Burst and Tonic Spinal Cord Stimulation

      , , , , ,
      Neuromodulation: Technology at the Neural Interface
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Visceral pain: a review of experimental studies.

          This paper reviews clinical and basic science research reports and is directed toward an understanding of visceral pain, with emphasis on studies related to spinal processing. Four main types of visceral stimuli have been employed in experimental studies of visceral nociception: (1) electrical, (2) mechanical, (3) ischemic, and (4) chemical. Studies of visceral pain are discussed in relation to the use and 'adequacy' of these stimuli and the responses produced (e.g., behavioral, pseudoaffective, neuronal, etc.). We propose a definition of an adequate noxious visceral stimulus and speculate on spinal mechanisms of visceral pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation.

            The purpose of this paper is to discuss which nerve fibers in the various quadrants of the spinal cord are immediately activated under normal conditions of spinal cord stimulation, ie, at voltages within the therapeutic range. The conclusions are based on both empirical and computer modeling data. The recruitment of dorsal column (DC) fibers is most likely restricted to Aβ fibers with a diameter ≥ 10.7 μm in a 0.20-0.25 mm layer under the pia mater and fibers of 9.4-10.7 μm in an even smaller outer layer when a conventional SCS lead is used. In a 0.25-mm outer layer of the T11 segment the number of Aβ fibers ≥ 10.7 μm, as estimated in a recent morphometric study, is about 56 in each DC. Because a DC at T11 innervates 12 dermatomes, a maximum of 4-5 fibers (≥ 10.7 μm) may be recruited in each dermatome near the discomfort threshold. The dermatome activated just below the discomfort threshold is likely to be stimulated by just a single fiber, suggesting that paresthesia and pain relief may be effected in a dermatome by the stimulation of a single large Aβ fiber. The depth of stimulation in the DCs, and thereby the number of recruited Aβ fibers, may be increased 2-3 fold when stimulation is applied by an optimized electrode configuration (a narrow bi/tripole or a transverse tripole). Assuming that the largest Aβ fibers in a dorsal root have a diameter of 15 μm, the smallest ones recruited at discomfort threshold would be 12 μm. The latter are presumably of proprioceptive origin and responsible for segmental reflexes and uncomfortable sensations. Furthermore, it is shown to be unlikely that, apart from dorsal roots and a thin outer layer of the DCs, any other spinal structures are recruited when stimulation is applied in the dorsal epidural space. Finally, anodal excitation and anodal propagation block are unlikely to occur with SCS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

              Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer) are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs) generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG) preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG) neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250), whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000) was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three stimulus frequencies.
                Bookmark

                Author and article information

                Journal
                Neuromodulation: Technology at the Neural Interface
                Neuromodulation: Technology at the Neural Interface
                Wiley-Blackwell
                10947159
                February 2014
                February 24 2014
                : 17
                : 2
                : 143-151
                Article
                10.1111/ner.12117
                24655042
                2aafce3e-4086-44b8-a09e-9204e1e48854
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article