Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extended-spectrum β-lactamase bla CTX-M-1 group in gram-negative bacteria colonizing patients admitted at Mazimbu hospital and Morogoro Regional hospital in Morogoro, Tanzania

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The objective of this study was to determine the proportion of extended spectrum β-lactamase producing gram-negative bacteria (ESBL-GNB) colonizing patients admitted at Mazimbu hospital and Morogoro Regional hospital, in Morogoro, Tanzania. Rectal colonization with ESBL-GNB increases the risks of developing bacterial infections by extra-intestinal pathogenic ESBL-GNB.

          Results

          Of the 285 patients investigated, 123 (43.2%) carried ESBL-GNB in their intestines. Five of the 123 ESBL positive patients were colonized with two different bacteria, making a total of 128 ESBL producing isolates. Escherichia coli (n = 95, 74.2%) formed the majority of ESBL isolates. The proportion of CTX-M-1 group genes among ESBL isolates tested was 94.9% (93/98). History of antibiotic use (OR: 1.83, 95% CI: 1.1–3.2, P = 0.03), being on antibiotic treatment (OR: 2.61, 95% CI: 1.5–4.53, P = 0.001), duration of hospital stay (OR: 1.2, 95% CI: 1.1–1.3, P < 0.001) and history of previous admission (OR: 2.24, 95% CI: 1.2–4.1, P = 0.009) independently predicted ESBL-GNB carriage.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.

          The aim of broth and agar dilution methods is to determine the lowest concentration of the assayed antimicrobial agent (minimal inhibitory concentration, MIC) that, under defined test conditions, inhibits the visible growth of the bacterium being investigated. MIC values are used to determine susceptibilities of bacteria to drugs and also to evaluate the activity of new antimicrobial agents. Agar dilution involves the incorporation of different concentrations of the antimicrobial substance into a nutrient agar medium followed by the application of a standardized number of cells to the surface of the agar plate. For broth dilution, often determined in 96-well microtiter plate format, bacteria are inoculated into a liquid growth medium in the presence of different concentrations of an antimicrobial agent. Growth is assessed after incubation for a defined period of time (16-20 h) and the MIC value is read. This protocol applies only to aerobic bacteria and can be completed in 3 d.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determination of minimum inhibitory concentrations.

            Minimum inhibitory concentrations (MICs) are defined as the lowest concentration of an antimicrobial that will inhibit the visible growth of a microorganism after overnight incubation, and minimum bactericidal concentrations (MBCs) as the lowest concentration of antimicrobial that will prevent the growth of an organism after subculture on to antibiotic-free media. MICs are used by diagnostic laboratories mainly to confirm resistance, but most often as a research tool to determine the in vitro activity of new antimicrobials, and data from such studies have been used to determine MIC breakpoints. MBC determinations are undertaken less frequently and their major use has been reserved for isolates from the blood of patients with endocarditis. Standardized methods for determining MICs and MBCs are described in this paper. Like all standardized procedures, the method must be adhered to and may not be adapted by the user. The method gives information on the storage of standard antibiotic powder, preparation of stock antibiotic solutions, media, preparation of inocula, incubation conditions, and reading and interpretation of results. Tables giving expected MIC ranges for control NCTC and ATCC strains are also supplied.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The spread of CTX-M-type extended-spectrum beta-lactamases.

              CTX-M-type enzymes are a group of class A extended-spectrum beta-lactamases (ESBLs) that are rapidly spreading among Enterobacteriaceae worldwide. More that 50 allotypes are known, clustered into six sub-lineages. The CTX-M-encoding genes have been captured from the chromosome of Kluyvera spp. on conjugative plasmids that mediate their dissemination among pathogenic enterobacteria. CTX-M-type ESBLs exhibit powerful activity against cefotaxime and ceftriaxone but generally not against ceftazidime, which has important implications for laboratory detection. However, several CTX-M variants with enhanced ceftazidimase activity have been detected. The rapid and massive spread of CTX-M-type ESBLs is rapidly changing the ESBL epidemiology and, in some geographical areas, these enzymes are now the most prevalent ESBLs in Enterobacteriaceae.
                Bookmark

                Author and article information

                Contributors
                vsilago.silago2@gmail.com
                Journal
                BMC Res Notes
                BMC Res Notes
                BMC Research Notes
                BioMed Central (London )
                1756-0500
                27 February 2021
                27 February 2021
                2021
                : 14
                : 77
                Affiliations
                [1 ]Quality Assurance & Training Centre, National Health Laboratory, P. O. Box 9083, Dar Es Salaam, Tanzania
                [2 ]GRID grid.411961.a, ISNI 0000 0004 0451 3858, Department of Microbiology and Immunology, Weill Bugando School of Medicine, , Catholic University of Health and Allied Sciences-Bugando, ; P. O. Box 1464, Mwanza, Tanzania
                [3 ]GRID grid.416716.3, ISNI 0000 0004 0367 5636, National Institute for Medical Research, ; P. O. Box 805, Dodoma, Tanzania
                Author information
                http://orcid.org/0000-0002-4178-3254
                Article
                5495
                10.1186/s13104-021-05495-x
                7913416
                33640022
                2b079e16-0e78-4ef0-a9ee-d2d14d939633
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 15 December 2020
                : 16 February 2021
                Funding
                Funded by: WHO, AGISAR Pilot Project
                Categories
                Research Note
                Custom metadata
                © The Author(s) 2021

                Medicine
                antimicrobial stewardship,esbl colonization,esbl genes,infection prevention and control

                Comments

                Comment on this article