15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autosomal recessive cerebellar ataxia with spasticity due to a rare mutation in GBA2 gene in a large consanguineous Saudi family

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nonlysosomal glucosylceramidase β2 ( GBA2) gene encode an enzyme that catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Mutations in the GBA2 gene have been reported to cause hereditary spastic paraplegia, autosomal recessive cerebellar ataxia with spasticity, and Marinescu-Sjögren-Like Syndrome. In this study, we report the clinical features and genetic diagnosis of autosomal recessive cerebellar ataxia with spasticity due to a rare mutation in GBA2 gene in a large consanguineous Saudi family. We included a large consanguineous Saudi family with a presumptive clinical diagnosis of ataxia at King Abdulaziz Medical City in Jeddah, Saudi Arabia. The family included six affected individuals and four unaffected in addition to the parents. Whole exome sequencing (WES) was performed for the proband IV-5, and Sanger sequencing was used to confirm the variant in other family members. Segregation study was performed using DNA from the parents and siblings of the proband. Sequence analysis identified a homozygous variant c.2618G>A, p.(Arg873His) in GBA2 gene. The homozygous variant was identified in affected members of the family while the parents and the other four siblings were heterozygous carriers of the variant. One sibling was not available for genetic testing. The variant identified in our patients is classified as pathogenic considering the current evidence of the variant. Autosomal recessive cerebellar ataxia with spasticity is an extremely rare genetic disorder with very few cases reported in the literature. We conclude that the c.2617G>A mutation in GBA2 gene causes the loss of function with abolishment of the enzymatic activity that causes the disease. This report adds further evidence to support the pathogenicity of this variant. The patients had the classical clinical phenotype of cerebellar ataxia and spasticity consistent with previous reports in the literature.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The spinocerebellar ataxias.

          Slowly progressive ataxia accompanied by cerebellar degeneration is often genetic in origin. The past 15 years have witnessed a revolution in our understanding of the causes of dominantly inherited ataxias, now known as the spinocerebellar ataxias (SCAs). Nearly 30 distinct genetic causes of SCA are known, numbered chronologically in order of discovery. All SCAs display classic cerebellar signs, and many display disabling noncerebellar features, most commonly brainstem dysfunction. Eye movement abnormalities are common, reflecting cerebellar and brainstem degeneration. Visual loss from retinal degeneration is rare in SCA, occurring most commonly and profoundly in SCA7. Although the SCAs are relentlessly progressive and currently untreatable, recent scientific advances have begun to shed light on various disease mechanisms that may lead to preventive therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications.

            Diseases of the central nervous system still remain among the most challenging pathologies known to mankind, having no or limited therapeutic possibilities and a very pessimistic prognosis. Advances in stem cell biology in the last decade have shown that stem cells might provide an inexhaustible source of neurons and glia as well as exerting a neuroprotective effect on the host tissue, thus opening new horizons for tissue engineering and regenerative medicine. Here, we discuss the progress made in the cell-based therapy of spinal cord injury. An emphasis has been placed on the application of adult mesenchymal stromal cells (MSCs). We then review the latest and most significant results from in vitro and in vivo research focusing on the regenerative/neuroprotective properties of MSCs. We also attempt to correlate the effect of MSCs with the pathological events that are taking place in the nervous tissue after SCI. Finally, we discuss the results from preclinical and clinical trials involving different routes of MSC application into patients with neurological disorders of the spinal cord. Copyright © 2013. Published by Elsevier Masson SAS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways.

              Autosomal-dominant spinocerebellar ataxias, autosomal-recessive spinocerebellar ataxias, and hereditary spastic paraplegias have traditionally been designated in separate clinicogenetic disease classifications. This classification system still largely frames clinical thinking and genetic workup in clinical practice. Yet, with the advent of next-generation sequencing, phenotypically unbiased studies have revealed the limitations of this classification system. Various genes (eg, SPG7, SYNE1, PNPLA6) traditionally rooted in either the ataxia or hereditary spastic paraplegia classification system have now been shown to cause ataxia on the one end of the disease continuum and hereditary spastic paraplegia on the other. Other genes such as GBA2 and KIF1C were almost simultaneously published as both a hereditary spastic paraplegia and an ataxia gene. The variability and fluidity of observed phenotypes along the ataxia-spasticity spectrum warrants a rethinking of the traditional classification system. We propose to replace this divisive diagnosis-driven ataxia and hereditary spastic paraplegia classification system by a descriptive, unbiased approach of modular phenotyping. This approach is also open to expansion of the phenotype beyond ataxia and spasticity, which often occur as part of broader multisystem neuronal dysfunction. The concept of a continuous ataxia-spasticity disease spectrum is further supported by ataxias and hereditary spastic paraplegias sharing not only overlapping phenotypes and underlying genes, but also common cellular pathways and disease mechanisms. This suggests a shared vulnerability of cerebellar and corticospinal neurons for common pathophysiological processes. It might be this mechanistic overlap that drives their clinical overlap. A mechanistically inspired classification system will help to pave the way for mechanism-based strategies for drug development. © 2017 International Parkinson and Movement Disorder Society.
                Bookmark

                Author and article information

                Contributors
                Journal
                Genes Dis
                Genes Dis
                Genes & Diseases
                Chongqing Medical University
                2352-4820
                2352-3042
                27 July 2019
                January 2021
                27 July 2019
                : 8
                : 1
                : 110-114
                Affiliations
                [a ]King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
                [b ]King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
                [c ]Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
                [d ]Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
                [e ]Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
                Author notes
                []Corresponding author. P.O. Box: 12723, Jeddah, 21483, Saudi Arabia. halgahtani@ 123456hotmail.com
                Article
                S2352-3042(19)30053-4
                10.1016/j.gendis.2019.07.009
                7859417
                33569519
                2b2d4229-dde6-4f59-ba0d-16af76dad1aa
                © 2019 Chongqing Medical University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 21 June 2019
                : 18 July 2019
                Categories
                Full Length Article

                ataxia with spasticity,autosomal recessive,gba2,novel mutation,saudi arabia

                Comments

                Comment on this article