11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The beneficial effects of enriched environments have been established through a long history of research. Enrichment of the living conditions of captive animals in the form of larger cages, sensory stimulating objects, and opportunities for social interaction and physical exercise, has been shown to reduce emotional reactivity, ameliorate abnormal behaviors, and enhance cognitive functioning. Recently, environmental enrichment research has been extended to humans, in part due to growing interest in its potential therapeutic benefits for children with neurodevelopmental disorders (NDDs). This paper reviews the history of enriched environment research and the use of enriched environments as a developmental intervention in studies of both NDD animal models and children. We argue that while environmental enrichment may sometimes benefit children with NDDs, several methodological factors need to be more closely considered before the efficacy of this approach can be adequately evaluated, including: (i) operationally defining and standardizing enriched environment treatments across studies; (ii) use of control groups and better control over potentially confounding variables; and (iii) a comprehensive theoretical framework capable of predicting when and how environmental enrichment will alter the trajectory of NDDs.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Neural consequences of environmental enrichment.

          Neuronal plasticity is a central theme of modern neurobiology, from cellular and molecular mechanisms of synapse formation in Drosophila to behavioural recovery from strokes in elderly humans. Although the methods used to measure plastic responses differ, the stimuli required to elicit plasticity are thought to be activity-dependent. In this article, we focus on the neuronal changes that occur in response to complex stimulation by an enriched environment. We emphasize the behavioural and neurobiological consequences of specific elements of enrichment, especially exercise and learning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation.

            There is controversy over the nature of the disturbance in brain development that underpins attention-deficit/hyperactivity disorder (ADHD). In particular, it is unclear whether the disorder results from a delay in brain maturation or whether it represents a complete deviation from the template of typical development. Using computational neuroanatomic techniques, we estimated cortical thickness at >40,000 cerebral points from 824 magnetic resonance scans acquired prospectively on 223 children with ADHD and 223 typically developing controls. With this sample size, we could define the growth trajectory of each cortical point, delineating a phase of childhood increase followed by adolescent decrease in cortical thickness (a quadratic growth model). From these trajectories, the age of attaining peak cortical thickness was derived and used as an index of cortical maturation. We found maturation to progress in a similar manner regionally in both children with and without ADHD, with primary sensory areas attaining peak cortical thickness before polymodal, high-order association areas. However, there was a marked delay in ADHD in attaining peak thickness throughout most of the cerebrum: the median age by which 50% of the cortical points attained peak thickness for this group was 10.5 years (SE 0.01), which was significantly later than the median age of 7.5 years (SE 0.02) for typically developing controls (log rank test chi(1)(2) = 5,609, P < 1.0 x 10(-20)). The delay was most prominent in prefrontal regions important for control of cognitive processes including attention and motor planning. Neuroanatomic documentation of a delay in regional cortical maturation in ADHD has not been previously reported.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat.

              The mothers of infant rats show individual differences in the frequency of licking/grooming and arched-back nursing (LG-ABN) of pups that contribute to the development of individual differences in behavioral responses to stress. As adults, the offspring of mothers that exhibited high levels of LG-ABN showed substantially reduced behavioral fearfulness in response to novelty compared with the offspring of low LG-ABN mothers. In addition, the adult offspring of the high LG-ABN mothers showed significantly (i) increased central benzodiazepine receptor density in the central, lateral, and basolateral nuclei of the amygdala as well as in the locus ceruleus, (ii) increased alpha2 adrenoreceptor density in the locus ceruleus, and (iii) decreased corticotropin-releasing hormone (CRH) receptor density in the locus ceruleus. The expression of fear and anxiety is regulated by a neural circuitry that includes the activation of ascending noradrenergic projections from the locus ceruleus to the forebrain structures. Considering the importance of the amygdala, notably the anxiogenic influence of CRH projections from the amygdala to the locus ceruleus, as well as the anxiolytic actions of benzodiazepines, for the expression of behavioral responses to stress, these findings suggest that maternal care during infancy serves to "program" behavioral responses to stress in the offspring by altering the development of the neural systems that mediate fearfulness.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                06 March 2019
                2019
                : 10
                : 466
                Affiliations
                [1] 1Neural and Cognitive Plasticity Laboratory, Department of Psychology, University at Buffalo, The State University of New York , Buffalo, NY, United States
                [2] 2Department of School and Counseling Psychology, University at Buffalo, The State University of New York , Buffalo, NY, United States
                Author notes

                Edited by: Francesca Marina Bosco, University of Turin, Italy

                Reviewed by: Dora Reglodi, University of Pécs, Hungary; Francisco Capani, University of Buenos Aires, Argentina

                *Correspondence: Natalie J. Ball, njball@ 123456buffalo.edu Eduardo Mercado III, emiii@ 123456buffalo.edu

                This article was submitted to Cognitive Science, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2019.00466
                6414413
                30894830
                2b3060a1-94a5-41cf-823c-54ff43e2cdd0
                Copyright © 2019 Ball, Mercado and Orduña.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 September 2018
                : 15 February 2019
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 112, Pages: 12, Words: 0
                Categories
                Psychology
                Review

                Clinical Psychology & Psychiatry
                plasticity,cortical reorganization,learning,cognitive development,animal model

                Comments

                Comment on this article