46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For humans a daily intake of up to 500 mg omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) is recommended, amounting to an annual requirement of 1.25 million metric tonnes (mt) for a population of 7 billion people. The annual global supply of n-3 LC-PUFA cannot meet this level of requirement and so there is a large gap between supply and demand. The dietary source of n-3 LC-PUFA, fish and seafood, is increasingly provided by aquaculture but using fish oil in feeds to supply n-3 LC-PUFA is unsustainable. Therefore, new sources of n-3 LC-PUFA are required to supply the demand from aquaculture and direct human consumption. One approach is metabolically engineering oilseed crops to synthesize n-3 LC-PUFA in seeds. Transgenic Camelina sativa expressing algal genes was used to produce an oil containing n-3 LC-PUFA to replace fish oil in salmon feeds. The oil had no detrimental effects on fish performance, metabolic responses or the nutritional quality of the fillets of the farmed fish.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica.

          The availability of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is currently limited because they are produced mainly by marine fisheries that cannot keep pace with the demands of the growing market for these products. A sustainable non-animal source of EPA and DHA is needed. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica resulted in a strain that produced EPA at 15% of dry cell weight. The engineered yeast lipid comprises EPA at 56.6% and saturated fatty acids at less than 5% by weight, which are the highest and the lowest percentages, respectively, among known EPA sources. Inactivation of the peroxisome biogenesis gene PEX10 was crucial in obtaining high EPA yields and may increase the yields of other commercially desirable lipid-related products. This technology platform enables the production of lipids with tailored fatty acid compositions and provides a sustainable source of EPA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis.

            Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of the joints and bones. The n-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) is the precursor of inflammatory eicosanoids which are involved in RA. Some therapies used in RA target ARA metabolism. Marine n-3 PUFAs (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) found in oily fish and fish oils decrease the ARA content of cells involved in immune responses and decrease the production of inflammatory eicosanoids from ARA. EPA gives rise to eicosanoid mediators that are less inflammatory than those produced from ARA and both EPA and DHA give rise to resolvins that are anti-inflammatory and inflammation resolving, although little is known about these latter mediators in RA. Marine n-3 PUFAs can affect other aspects of immunity and inflammation relevant to RA, including dendritic cell and T cell function and production of inflammatory cytokines and reactive oxygen species, although findings for these outcomes are not consistent. Fish oil has been shown to slow the development of arthritis in animal models and to reduce disease severity. A number of randomised controlled trials of marine n-3 PUFAs have been performed in patients with RA. A systematic review included 23 studies. Evidence is seen for a fairly consistent, but modest, benefit of marine n-3 PUFAs on joint swelling and pain, duration of morning stiffness, global assessments of pain and disease activity, and use of non-steroidal anti-inflammatory drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The versatility of algae and their lipid metabolism.

              Eukaryotic algae are a very diverse group of organisms that are key components of ecosystems ranging from deserts to the Antarctic. They account for over half of the primary production at the base of food chains. The lipids of different classes are varied and contain unusual compounds not found in other phyla. In this short review, we introduce the major cellular lipids and their fatty acids and then describe how the latter (particularly the polyunsaturated fatty acids, PUFAs) are synthesised. The discovery of different elongases and desaturases important for PUFA production is detailed and their application for biotechnology described. Finally, the potential for algae in commercial applications is discussed, particularly in relation to the production of very long chain PUFAs and biofuel.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                29 January 2015
                2015
                : 5
                : 8104
                Affiliations
                [1 ]Institute of Aquaculture, School of Natural Sciences, University of Stirling , Stirling FK9 4LA, United Kingdom
                [2 ]Department of Biological Chemistry and Crop Protection, Rothamsted Research , Harpenden AL5 2JQ, United Kingdom
                [3 ]Biomar Ltd., North Shore Road , Grangemouth FK3 8UL, United Kingdom
                Author notes
                Article
                srep08104
                10.1038/srep08104
                4309969
                25632018
                2b36f49c-407d-4303-91ec-e4031c1eb30a
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 28 September 2014
                : 06 January 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article