16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential Risk of Three Zoonotic Protozoa ( Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent decades, worldwide fish consumption has increased notably worldwide. Despite the health benefits of fish consumption, it also can suppose a risk because of fishborne diseases, including parasitic infections. Global changes are leading to the emergence of parasites in new locations and to the appearance of new sources of transmission. That is the case of the zoonotic protozoa Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii; all of them reach aquatic environments and have been found in shellfish. Similarly, these protozoa can be present in other aquatic animals, such as fish. The present review gives an overview on these three zoonotic protozoa in order to understand their potential presence in fish and to comprehensively revise all the evidences of fish as a new potential source of Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii transmission. All of them have been found in both marine and freshwater fishes. Until now, it has not been possible to demonstrate that fish are natural hosts for these protozoa; otherwise, they would merely act as mechanical transporters. Nevertheless, even if fish only accumulate and transport these protozoa, they could be a “new” source of infection for people.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Toxoplasmosis.

          Toxoplasma gondii is a protozoan parasite that infects up to a third of the world's population. Infection is mainly acquired by ingestion of food or water that is contaminated with oocysts shed by cats or by eating undercooked or raw meat containing tissue cysts. Primary infection is usually subclinical but in some patients cervical lymphadenopathy or ocular disease can be present. Infection acquired during pregnancy may cause severe damage to the fetus. In immunocompromised patients, reactivation of latent disease can cause life-threatening encephalitis. Diagnosis of toxoplasmosis can be established by direct detection of the parasite or by serological techniques. The most commonly used therapeutic regimen, and probably the most effective, is the combination of pyrimethamine with sulfadiazine and folinic acid. This Seminar provides an overview and update on management of patients with acute infection, pregnant women who acquire infection during gestation, fetuses or infants who are congenitally infected, those with ocular disease, and immunocompromised individuals. Controversy about the effectiveness of primary and secondary prevention in pregnant women is discussed. Important topics of current and future research are presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxoplasma gondii: from animals to humans

            Toxoplasmosis is one of the more common parasitic zoonoses world-wide. Its causative agent, Toxoplasma gondii, is a facultatively heteroxenous, polyxenous protozoon that has developed several potential routes of transmission within and between different host species. If first contracted during pregnancy, T. gondii may be transmitted vertically by tachyzoites that are passed to the foetus via the placenta. Horizontal transmission of T. gondii may involve three life-cycle stages, i.e. ingesting infectious oocysts from the environment or ingesting tissue cysts or tachyzoites which are contained in meat or primary offal (viscera) of many different animals. Transmission may also occur via tachyzoites contained in blood products, tissue transplants, or unpasteurised milk. However, it is not known which of these routes is more important epidemiologically. In the past, the consumption of raw or undercooked meat, in particular of pigs and sheep, has been regarded as a major route of transmission to humans. However, recent studies showed that the prevalence of T. gondii in meat-producing animals decreased considerably over the past 20 years in areas with intensive farm management. For example, in several countries of the European Union prevalences of T. gondii in fattening pigs are now <1%. Considering these data it is unlikely that pork is still a major source of infection for humans in these countries. However, it is likely that the major routes of transmission are different in human populations with differences in culture and eating habits. In the Americas, recent outbreaks of acute toxoplasmosis in humans have been associated with oocyst contamination of the environment. Therefore, future epidemiological studies on T. gondii infections should consider the role of oocysts as potential sources of infection for humans, and methods to monitor these are currently being developed. This review presents recent epidemiological data on T. gondii, hypotheses on the major routes of transmission to humans in different populations, and preventive measures that may reduce the risk of contracting a primary infection during pregnancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zoonotic potential and molecular epidemiology of Giardia species and giardiasis.

              Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
                Bookmark

                Author and article information

                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                21 December 2020
                December 2020
                : 9
                : 12
                : 1913
                Affiliations
                [1 ]Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; samantha.moratalmartinez@ 123456uchceu.es (S.M.); jcardells@ 123456uchceu.es (J.C.); naima.marco@ 123456uchceu.es (N.M.M.-H.); silvia.puigcercosgomila@ 123456uchceu.es (S.P.); victor.lizana@ 123456uchceu.es (V.L.); jordi.lopez1@ 123456uchceu.es (J.L.-R.)
                [2 ]Farmacy Department, Universidad CEU-Cardenal Herrera, Santiago Ramón y Cajal St, 46115 Alfara del Patriarca, Valencia, Spain
                [3 ]Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
                Author notes
                [* ]Correspondence: mdea@ 123456uchceu.es
                Author information
                https://orcid.org/0000-0003-4091-4205
                https://orcid.org/0000-0003-2490-6336
                https://orcid.org/0000-0001-9506-4311
                Article
                foods-09-01913
                10.3390/foods9121913
                7767443
                33371396
                2ba044ba-3d14-49d8-96b1-186e9d6f95ea
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 November 2020
                : 18 December 2020
                Categories
                Review

                fishborne parasites,zoonotic protozoa,cryptosporidium spp.,giardia duodenalis,toxoplasma gondii

                Comments

                Comment on this article