18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] ( 1-phth) and [(phen)Cu(phth) 2] ( 1-phth 2 ), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth 2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOO tBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth 2 reacted with excess cyclohexane at 100 °C without tBuOO tBu. However, the reactions of 1-phth and 1-phth 2 with tBuOO tBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-O tBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr 4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth) 2] with tBuOO tBu and (Ph(Me) 2CO) 2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d 12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth 2 to form the corresponding N-alkyl imide product.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations.

          Synthetic chemists aspire both to develop novel chemical reactions and to improve reaction conditions to maximize resource efficiency, energy efficiency, product selectivity, operational simplicity, and environmental health and safety. Carbon-carbon bond formation is a central part of many chemical syntheses, and innovations in these types of reactions will profoundly improve overall synthetic efficiency. This Account describes our work over the past several years to form carbon-carbon bonds directly from two different C-H bonds under oxidative conditions, cross-dehydrogenative coupling (CDC). We have focused most of our efforts on carbon-carbon bonds formed via the functionalization of sp(3) C-H bonds with other C-H bonds. In the presence of simple and cheap catalysts such as copper and iron salts and oxidants such as hydrogen peroxide, dioxygen, tert-butylhydroperoxide, and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), we can directly functionalize various sp(3) C-H bonds by other C-H bonds without requiring preactivation. We demonstrate (1) reaction of alpha-C-H bonds of nitrogen in amines, (2) reaction of alpha-C-H bonds of oxygen in ethers, (3) reaction of allylic and benzylic C-H bonds, and (4) reaction of alkane C-H bonds. These CDC reactions can tolerate a variety of functional groups, and some can occur under aqueous conditions. Depending on the specific transformation, we propose the in situ generation of different intermediates. These methods provide an alternative to the separate steps of prefunctionalization and defunctionalization that have traditionally been part of synthetic design. As a result, these methods will increase synthetic efficiencies at the most fundamental level. On an intellectual level, the development of C-C bond formations based on the reaction of only C-H bonds (possibly in water) challenges us to rethink some of the most fundamental concepts and theories regarding chemical reactivities. A successful reaction requires the conventionally and theoretically less reactive C-H bonds to react selectively in the presence of a variety of functional groups. With further investigation, we expect that C-C bond formations based on cross-dehydrogenative coupling will have a positive economic and ecological impact on the next generation of chemical syntheses.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Direct C-H transformation via iron catalysis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C-H bonds.

              For more than a century, chemists have endeavored to discover and develop reaction processes that enable the selective oxidation of hydrocarbons. In the 1970s, Abramovitch and Yamada described the synthesis and electrophilic reactivity of sulfonyliminoiodinanes (RSO(2)N═IPh), demonstrating the utility of this new class of reagents to function as nitrene equivalents. Subsequent investigations by Breslow, Mansuy, and Müller would show such oxidants to be competent for alkene and saturated hydrocarbon functionalization when combined with transition metal salts or metal complexes, namely those of Mn, Fe, and Rh. Here, we trace our own studies to develop N-atom transfer technologies for C-H and π-bond oxidation. This Account discusses advances in both intra- and intermolecular amination processes mediated by dirhodium and diruthenium complexes, as well as the mechanistic foundations of catalyst reactivity and arrest. Explicit reference is given to questions that remain unanswered and to problem areas that are rich for discovery. A fundamental advance in amination technology has been the recognition that iminoiodinane oxidants can be generated in situ in the presence of a metal catalyst that elicits subsequent N-atom transfer. Under these conditions, both dirhodium and diruthenium lantern complexes function as competent catalysts for C-H bond oxidation with a range of nitrogen sources (e.g., carbamates, sulfamates, sulfamides, etc.), many of which will not form isolable iminoiodinane equivalents. Practical synthetic methods and applications thereof have evolved in parallel with inquiries into the operative reaction mechanism(s). For the intramolecular dirhodium-catalyzed process, the body of experimental and computational data is consistent with a concerted asynchronous C-H insertion pathway, analogous to the consensus mechanism for Rh-carbene transfer. Other studies reveal that the bridging tetracarboxylate ligand groups, which shroud the dirhodium core, are labile to exchange under standard reaction conditions. This information has led to the generation of chelating dicarboxylate dinuclear rhodium complexes, exemplified by Rh(2)(esp)(2). The performance of this catalyst system is unmatched by other dirhodium complexes in both intra- and intermolecular C-H amination reactions. Tetra-bridged, mixed-valent diruthenium complexes function as effective promoters of sulfamate ester oxidative cyclization. These catalysts can be crafted with ligand sets other than carboxylates and are more resistant to oxidation than their dirhodium counterparts. A range of experimental and computational mechanistic data amassed with the tetra-2-oxypyridinate diruthenium chloride complex, [Ru(2)(hp)(4)Cl], has established the insertion event as a stepwise pathway involving a discrete radical intermediate. These data contrast dirhodium-catalyzed C-H amination and offer a cogent model for understanding the divergent chemoselectivity trends observed between the two catalyst types. This work constitutes an important step toward the ultimate goal of achieving predictable, reagent-level control over product selectivity.
                Bookmark

                Author and article information

                Journal
                J Am Chem Soc
                J. Am. Chem. Soc
                ja
                jacsat
                Journal of the American Chemical Society
                American Chemical Society
                0002-7863
                1520-5126
                09 January 2015
                09 January 2014
                12 February 2014
                : 136
                : 6
                : 2555-2563
                Affiliations
                []Department of Chemistry, University of California , Berkeley, California 94720, United States
                []Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin , Strasse des 17. Juni 135, Sekr. C2, 10623 Berlin, Germany
                Author notes
                Article
                10.1021/ja411912p
                3985719
                24405209
                2bbb986e-c9dd-4bef-ac34-fff3c3f2aa62
                Copyright © 2014 American Chemical Society
                History
                : 22 November 2013
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                ja411912p
                ja-2013-11912p

                Chemistry
                Chemistry

                Comments

                Comment on this article