11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Liposomal systems as carriers for bioactive compounds

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d7190833e173">Since the revolutionary discovery that phospholipids can form closed bilayered structures in aqueous systems, the study of liposomes has become a very interesting area of research. The versatility and amazing biocompatibility of liposomes has resulted in their wide-spread use in many scientific fields, and many of their applications, especially in medicine, have yielded breakthroughs in recent decades. Specifically, their easy preparation and various structural aspects have given rise to broadly usable methodologies to internalize different compounds, with either lipophilic or hydrophilic properties. The study of compounds with potential biotechnological application(s) is generally related to evaluation and risk assessment of the possible cytotoxic or therapeutic effects of the compound under study. In most cases, undesirable side-effects are associated with an interaction of the liposome with the cell membrane and/or its absorption and subsequent interaction with a cellular biomolecule. Liposomal carrier systems have an unprecedented potential for delivering bioactive substances to specific molecular targets due to their biocompatibility, biodegradability and low toxicity. Liposomes are therefore considered to be an invaluable asset in applied biotechnology studies due to their potential for interaction with both hydrophilic and lipophilic compounds. </p>

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Novel methods for liposome preparation.

          Liposomes are bilayer vesicles which have found use, among other applications, as drug delivery vehicles. Conventional techniques for liposome preparation and size reduction remain popular as these are simple to implement and do not require sophisticated equipment. However, issues related to scale-up for industrial production and scale-down for point-of-care applications have motivated improvements to conventional processes and have also led to the development of novel routes to liposome formation. In this article, these modified and new methods for liposome preparation have been reviewed and classified with the objective of updating the reader to recent developments in liposome production technology. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Liposomes as vaccine delivery systems: a review of the recent advances.

            Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome-DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic cancer vaccines are also summarized.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-dose liposomal amphotericin B for visceral leishmaniasis in India.

              Some 50% of patients with visceral leishmaniasis (kala-azar) worldwide live in the Indian state of Bihar. Liposomal amphotericin B is an effective treatment when administered in short courses. We wanted to determine whether the efficacy of a single infusion of liposomal amphotericin B was inferior to conventional parenteral therapy, consisting of 15 alternate-day infusions of amphotericin B deoxycholate. In this open-label study, we randomly assigned 412 patients in a 3:1 ratio to receive either liposomal amphotericin B (liposomal-therapy group) or amphotericin B deoxycholate (conventional-therapy group). Liposomal amphotericin B (at a dose of 10 mg per kilogram of body weight) was given once, and patients were discharged home 24 hours later. Amphotericin B deoxycholate, which was administered in 15 infusions of 1 mg per kilogram, was given every other day during a 29-day hospitalization. We determined the cure rate 6 months after treatment. A total of 410 patients--304 of 304 patients (100%) in the liposomal-therapy group and 106 of 108 patients (98%) in the conventional-therapy group--had apparent cure responses at day 30. Cure rates at 6 months were similar in the two groups: 95.7% (95% confidence interval [CI], 93.4 to 97.9) in the liposomal-therapy group and 96.3% (95% CI, 92.6 to 99.9) in the conventional-therapy group. Adverse events in the liposomal-therapy group were infusion-related fever or rigors (in 40%) and increased anemia or thrombocytopenia (in 2%); such events in the conventional-therapy group were fever or rigors (in 64%), increased anemia (in 19%), and hypokalemia (in 2%). Nephrotoxicity or hepatotoxicity developed in no more than 1% of patients in each group. A single infusion of liposomal amphotericin B was not inferior to and was less expensive than conventional therapy with amphotericin B deoxycholate. (ClinicalTrials.gov number, NCT00628719.) 2010 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Biophysical Reviews
                Biophys Rev
                Springer Nature
                1867-2450
                1867-2469
                December 2015
                October 10 2015
                December 2015
                : 7
                : 4
                : 391-397
                Article
                10.1007/s12551-015-0180-8
                5418487
                28510100
                2bbef564-576d-43b6-9429-310753bc73fc
                © 2015
                History

                Comments

                Comment on this article

                scite_

                Similar content2,382

                Cited by9

                Most referenced authors1,059