27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Valuing museum specimens: high-throughput DNA sequencing on historical collections of New Guinea crowned pigeons (Goura) : Valuing historical specimens with museomics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.

          Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Value of Museum Collections for Research and Society

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Back to the future: museum specimens in population genetics.

              Museums and other natural history collections (NHC) worldwide house millions of specimens. With the advent of molecular genetic approaches these collections have become the source of many fascinating population studies in conservation genetics that contrast historical with present-day genetic diversity. Recent developments in molecular genetics and genomics and the associated statistical tools have opened up the further possibility of studying evolutionary change directly. As we discuss here, we believe that NHC specimens provide a largely underutilized resource for such investigations. However, because DNA extracted from NHC samples is degraded, analyses of such samples are technically demanding and many potential pitfalls exist. Thus, we propose a set of guidelines that outline the steps necessary to begin genetic investigations using specimens from NHC.
                Bookmark

                Author and article information

                Journal
                Biological Journal of the Linnean Society
                Biol. J. Linn. Soc.
                Wiley-Blackwell
                00244066
                January 2016
                January 2016
                : 117
                : 1
                : 71-82
                Article
                10.1111/bij.12494
                2bbfec60-2586-4a47-b4e4-f27ee5102aa4
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article