2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The use of inertial measurement units for analyzing change of direction movement in sports: A scoping review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Change of direction movement is common in sports and the ability to perform this complex movement efficiently is related to athlete's performance. Wearable devices have been used to evaluate aspects of change of direction movement, but so far there are no clear recommendations on specific metrics to be used.

          The aims of this scoping review were to evaluate the reliability and validity of inertial measurement unit sensors to provide information on change of direction movement and to summarize the available evidence on inertial measurement units in analyzing change of direction movement in sports.

          A systematic search was employed in MEDLINE (Ovid), CINAHL (EBSCO host), SPORTDiscus (EBSCO host), EMBASE and Cochrane Database of Systematic Reviews and Web of Science to identify eligible studies. A complementary grey literature search was employed to locate non-peer reviewed studies. The risk of bias of the studies evaluating validity and/or reliability was evaluated using the AXIS tool.

          The initial search identified 15,165 studies. After duplicate removal and full-text screening 49 studies met the inclusion criteria, with 11 studies evaluating validity and/or reliability.

          There are promising results on the validity and reliability, but the number of studies is still small and the quality of the studies is limited. Most of the studies were conducted with pre-planned movements and participants were usually adult males. Varying sensor locations limits the ability to generalize these findings. Inertial measurement units (IMU) can be used to detect change of direction (COD) movements and COD heading angles with acceptable validity, but IMU measured or derived kinetic or kinematic variables present inconsistency and over-estimation.

          Studies can be improved with larger sample sizes and agreement on the metrics used and sensor placement. Future research should include more on-field studies.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS)

          Objectives The aim of this study was to develop a critical appraisal (CA) tool that addressed study design and reporting quality as well as the risk of bias in cross-sectional studies (CSSs). In addition, the aim was to produce a help document to guide the non-expert user through the tool. Design An initial scoping review of the published literature and key epidemiological texts was undertaken prior to the formation of a Delphi panel to establish key components for a CA tool for CSSs. A consensus of 80% was required from the Delphi panel for any component to be included in the final tool. Results An initial list of 39 components was identified through examination of existing resources. An international Delphi panel of 18 medical and veterinary experts was established. After 3 rounds of the Delphi process, the Appraisal tool for Cross-Sectional Studies (AXIS tool) was developed by consensus and consisted of 20 components. A detailed explanatory document was also developed with the tool, giving expanded explanation of each question and providing simple interpretations and examples of the epidemiological concepts being examined in each question to aid non-expert users. Conclusions CA of the literature is a vital step in evidence synthesis and therefore evidence-based decision-making in a number of different disciplines. The AXIS tool is therefore unique and was developed in a way that it can be used across disciplines to aid the inclusion of CSSs in systematic reviews, guidelines and clinical decision-making.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding injury mechanisms: a key component of preventing injuries in sport.

            Anterior cruciate ligament (ACL) injuries are a growing cause of concern, as these injuries can have serious consequences for the athlete with a greatly increased risk of early osteoarthrosis. Using specific training programmes, it may be possible to reduce the incidence of knee and ankle injuries. However, it is not known which programme components are the key to preventing knee and ankle injuries or how the exercises work to reduce injury risk. Our ability to design specific prevention programmes, whether through training or other preventive measures, is currently limited by an incomplete understanding of the causes of injuries. A multifactorial approach should be used to account for all the factors involved-that is, the internal and external risk factors as well as the inciting event (the injury mechanism). Although such models have been presented previously, we emphasise the need to use a comprehensive model, which accounts for the events leading to the injury situation (playing situation, player and opponent behaviour), as well as to include a description of whole body and joint biomechanics at the time of injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The training—injury prevention paradox: should athletes be training smarter and harder?

              Background There is dogma that higher training load causes higher injury rates. However, there is also evidence that training has a protective effect against injury. For example, team sport athletes who performed more than 18 weeks of training before sustaining their initial injuries were at reduced risk of sustaining a subsequent injury, while high chronic workloads have been shown to decrease the risk of injury. Second, across a wide range of sports, well-developed physical qualities are associated with a reduced risk of injury. Clearly, for athletes to develop the physical capacities required to provide a protective effect against injury, they must be prepared to train hard. Finally, there is also evidence that under-training may increase injury risk. Collectively, these results emphasise that reductions in workloads may not always be the best approach to protect against injury. Main thesis This paper describes the ‘Training-Injury Prevention Paradox’ model; a phenomenon whereby athletes accustomed to high training loads have fewer injuries than athletes training at lower workloads. The Model is based on evidence that non-contact injuries are not caused by training per se, but more likely by an inappropriate training programme. Excessive and rapid increases in training loads are likely responsible for a large proportion of non-contact, soft-tissue injuries. If training load is an important determinant of injury, it must be accurately measured up to twice daily and over periods of weeks and months (a season). This paper outlines ways of monitoring training load (‘internal’ and ‘external’ loads) and suggests capturing both recent (‘acute’) training loads and more medium-term (‘chronic’) training loads to best capture the player's training burden. I describe the critical variable—acute:chronic workload ratio—as a best practice predictor of training-related injuries. This provides the foundation for interventions to reduce players risk, and thus, time-loss injuries. Summary The appropriately graded prescription of high training loads should improve players’ fitness, which in turn may protect against injury, ultimately leading to (1) greater physical outputs and resilience in competition, and (2) a greater proportion of the squad available for selection each week.
                Bookmark

                Author and article information

                Contributors
                Journal
                International Journal of Sports Science & Coaching
                International Journal of Sports Science & Coaching
                SAGE Publications
                1747-9541
                2048-397X
                April 01 2021
                : 174795412110030
                Affiliations
                [1 ]Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
                [2 ]Department of Physical Therapy Education, College of Health Sciences, Western University of Health Sciences, Lebanon, Oregon, USA
                [3 ]United States Olympic and Paralympic Committee, Colorado Springs, Colorado, USA
                [4 ]Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
                [5 ]McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
                [6 ]Tampere Research Center of Sports Medicine, UKK Institute, Tampere, Finland
                Article
                10.1177/17479541211003064
                2bda3b19-b25d-437b-8518-556d3f1e1dc7
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article