18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tomato pomace as a nontraditional feedstuff: productive and reproductive performance, digestive enzymes, blood metabolites, and the deposition of carotenoids into egg yolk in quail breeders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to evaluate the inclusion of tomato pomace ( TP) into Japanese quail breeders' diet by investigating its effects on digestive enzymes, immune response, antioxidant status, blood biomarkers, productive performance, and the deposition of carotenoids into the egg yolk. A total of 150 mature 8-wk of age Japanese quails (100 females and 50 males) were allocated into 5 treatment groups, with 5 replicates, each of 6 quails (4 females and 2 males). The experimental diets were isoenergetic and isonitrogenous, based on corn and soybean meal, and included 0, 3, 6, 9, and 12% of tomato pomace, respectively. The results showed that dietary supplementation of tomato pomace up to 12% significantly improved the immune response, antioxidant response, and digestive enzymes of Japanese quail breeders, significantly decreased cholesterol, low-density lipoprotein ( LDL), and increased high-density lipoprotein ( HDL). Also, TP increased egg weight, egg mass and hatchability , where TP 6% had the greatest egg weight, egg mass and hatchability among other groups. Moreover, tomato pomace inclusion significantly had a positive effect on the deposition of lycopene into the egg yolk and it can be used as a good delivery system to improve human health. Tomato pomace up to 12% could be used as an alternative feedstuff in quail breeders' diets.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Antibiotics in early life alter the murine colonic microbiome and adiposity.

          Antibiotics administered in low doses have been widely used as growth promoters in the agricultural industry since the 1950s, yet the mechanisms for this effect are unclear. Because antimicrobial agents of different classes and varying activity are effective across several vertebrate species, we proposed that such subtherapeutic administration alters the population structure of the gut microbiome as well as its metabolic capabilities. We generated a model of adiposity by giving subtherapeutic antibiotic therapy to young mice and evaluated changes in the composition and capabilities of the gut microbiome. Administration of subtherapeutic antibiotic therapy increased adiposity in young mice and increased hormone levels related to metabolism. We observed substantial taxonomic changes in the microbiome, changes in copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids, increases in colonic short-chain fatty acid levels, and alterations in the regulation of hepatic metabolism of lipids and cholesterol. In this model, we demonstrate the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis.

            Epidemiological evidence suggests an association between consumption of tomato products or lycopene and lower risk for cardiovascular diseases (CVD). Our aim was to evaluate the state of the evidence from intervention trials on the effect of consuming tomato products and lycopene on markers of cardiovascular (CV) function. We undertook a systematic review and meta-analysis on the effect of supplementing tomato and lycopene on CV risk factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine

              Although dietary fiber (DF) negatively affects energy and nutrient digestibility, there is growing interest for the inclusion of its fermentable fraction in pig diets due to their functional properties and potential health benefits beyond supplying energy to the animals. This paper reviews some of the relevant information available on the role of different types of DF on digestion of nutrients in different sections of the gut, the fermentation process and its influence on gut environment, especially production and utilization of metabolites, microbial community and gut health of swine. Focus has been given on DF from feed ingredients (grains and coproducts) commonly used in pig diets. Some information on the role DF in purified form in comparison with DF in whole matrix of feed ingredients is also presented. First, composition and fractions of DF in different feed ingredients are briefly reviewed. Then, roles of different fractions of DF on digestion characteristics and physiological functions in the gastrointestinal tract (GIT) are presented. Specific roles of different fractions of DF on fermentation characteristics and their effects on production and utilization of metabolites in the GIT have been discussed. In addition, roles of DF fermentation on metabolic activity and microbial community in the intestine and their effects on intestinal health are reviewed and discussed. Evidence presented in this review indicates that there is wide variation in the composition and content of DF among feed ingredients, thereby their physico-chemical properties in the GIT of swine. These variations, in turn, affect the digestion and fermentation characteristics in the GIT of swine. Digestibility of DF from different feed ingredients is more variable and lower than that of other nutrients like starch, sugars, fat and CP. Soluble fractions of DF are fermented faster, produce higher amounts of volatile fatty acid than insoluble fractions, and favors growth of beneficial microbiota. Thus, selective inclusion of DF in diets can be used as a nutritional strategy to optimize the intestinal health of pigs, despite its lower digestibility and consequential negative effect on digestibility of other nutrients.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                13 January 2022
                April 2022
                13 January 2022
                : 101
                : 4
                : 101730
                Affiliations
                [* ]Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
                []Animal Production Department, National Research Centre, Giza 12622, Egypt
                []Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
                Author notes
                [1 ]Corresponding author: mmalagwany@ 123456zu.edu.eg
                Article
                S0032-5791(22)00035-9 101730
                10.1016/j.psj.2022.101730
                8857486
                35176706
                2c08af00-1071-4281-a385-7f514342a269
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 October 2021
                : 10 January 2022
                Categories
                MANAGEMENT AND PRODUCTION

                tomato pomace,blood metabolites,egg yolk carotenoids,quail breeders' diets

                Comments

                Comment on this article