15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age-dependent reference intervals for estimated and measured glomerular filtration rate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Defining mean and reference intervals for glomerular filtration rate (GFR) has been the subject of only a limited number of studies and review articles, with contradicting statements about the mean. Normal measured GFR (mGFR) values of ∼120–130 mL/min/1.73 m 2 have long been the referenced values for young adults but seem to be too high according to recent studies. Reference intervals are difficult to define because of the age decline of GFR, which is also observed in healthy subjects. Little data are available for subjects >70 years of age.

          Methods

          Based on the reference intervals for serum creatinine (SCr) and the recently published full-age spectrum (FAS) equation, we define simple age-dependent equations for the reference limits of GFR. The mGFR of 633 living potential kidney donors was used to validate the new formulae that define the reference interval.

          Results

          The reference limits for estimated GFR (eGFR), calculated by entering the reference limits for SCr into the FAS equation closely correspond with published reference limits for mGFR. Of the mGFRs of potential living kidney donors, 97.2% lie between the newly defined reference limits for GFR.

          Conclusion

          SCr reference limits may serve to define age-dependent reference limits for eGFR and mGFR.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          An estimated glomerular filtration rate equation for the full age spectrum.

          Glomerular filtration rate (GFR) is accepted as the best indicator of kidney function and is commonly estimated from serum creatinine (SCr)-based equations. Separate equations have been developed for children (Schwartz equation), younger and middle-age adults [Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation] and older adults [Berlin Initiative Study 1 (BIS1) equation], and these equations lack continuity with ageing. We developed and validated an equation for estimating the glomerular filtration rate that can be used across the full age spectrum (FAS).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            References for growth and pubertal development from birth to 21 years in Flanders, Belgium.

            Due to the secular trend in length and height, growth references need to be updated regularly. Reference charts that were until recently used in Belgium are based on samples collected more than 30 years ago, and references for body mass index (BMI) and pubertal development have not been established before. To establish contemporary cross-sectional reference charts for height, weight, BMI, head circumference, and pubertal development from birth to 21 years of age, based on a representative sample of children from Flanders, Belgium. 15 989 healthy subjects of Belgian origin, 0-25 years of age, were measured in 2002-2004. Growth curves were fitted with the LMS method, and percentiles for the pubertal development were estimated with generalized additive models on status quo data from 8690 subjects aged 6-22 years of age. A positive secular trend in height and weight is observed in children above 5 years of age. Adult median height has increased by 1.2 cm/decade in boys and 0.8 cm/decade in girls; median weight by 0.9 kg/decade in boys, and 1.0 kg/decade in girls, and the weight distribution became more skewed. The BMI curve is comparable to that of other populations, except for higher percentiles. This reflects the increasing prevalence of overweight and obesity. Median age at menarche (13.0 years) has not advanced any more over the past 50 years. Median ages at menarche and B2 in girls and G2 or T4 in boys are comparable to other West European estimates, but approximately 10% enter G2/T4 before 9 years of age. The ongoing secular trend in height and weight makes growth charts previously used in Belgium obsolete. New representative charts for growth and pubertal development are introduced. For weight monitoring, it is advised that the now-available BMI growth charts are used.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: How to measure glomerular filtration rate with iohexol?

              While there is general agreement on the necessity to measure glomerular filtration rate (GFR) in many clinical situations, there is less agreement on the best method to achieve this purpose. As the gold standard method for GFR determination, urinary (or renal) clearance of inulin, fades into the background due to inconvenience and high cost, a diversity of filtration markers and protocols compete to replace it. In this review, we suggest that iohexol, a non-ionic contrast agent, is most suited to replace inulin as the marker of choice for GFR determination. Iohexol comes very close to fulfilling all requirements for an ideal GFR marker in terms of low extra-renal excretion, low protein binding and in being neither secreted nor reabsorbed by the kidney. In addition, iohexol is virtually non-toxic and carries a low cost. As iohexol is stable in plasma, administration and sample analysis can be separated in both space and time, allowing access to GFR determination across different settings. An external proficiency programme operated by Equalis AB, Sweden, exists for iohexol, facilitating interlaboratory comparison of results. Plasma clearance measurement is the protocol of choice as it combines a reliable GFR determination with convenience for the patient. Single-sample protocols dominate, but multiple-sample protocols may be more accurate in specific situations. In low GFRs one or more late samples should be included to improve accuracy. In patients with large oedema or ascites, urinary clearance protocols should be employed. In conclusion, plasma clearance of iohexol may well be the best candidate for a common GFR determination method.
                Bookmark

                Author and article information

                Journal
                Clin Kidney J
                Clin Kidney J
                ckj
                Clinical Kidney Journal
                Oxford University Press
                2048-8505
                2048-8513
                August 2017
                28 April 2017
                28 April 2017
                : 10
                : 4
                : 545-551
                Affiliations
                [1 ]Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
                [2 ]Nephrology-Dialysis-Transplantation, University of Liège, CHU Sart Tilman, Liège, Belgium
                [3 ]Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
                [4 ]Department of Nuclear Medicine, University Hospital Leuven and Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
                [5 ]Exploration Fonctionnelle Rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France
                Author notes
                [* ]Correspondence and offprint requests to: Hans Pottel; E-mail: Hans.Pottel@ 123456kuleuven-kulak.be
                Article
                sfx026
                10.1093/ckj/sfx026
                5570001
                28852494
                2c11353f-d58e-4410-bb8b-c13804c4b980
                © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 25 January 2017
                : 14 March 2017
                Page count
                Pages: 7
                Categories
                Gfr Reference Intervals

                Nephrology
                age-dependent reference intervals,estimated and measured glomerular filtration rate

                Comments

                Comment on this article