Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular interactions underpinning the phenotype of hibernation in mammals

      The Journal of Experimental Biology
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Pluripotent stem cells in disease modelling and drug discovery.

          Experimental modelling of human disorders enables the definition of the cellular and molecular mechanisms underlying diseases and the development of therapies for treating them. The availability of human pluripotent stem cells (PSCs), which are capable of self-renewal and have the potential to differentiate into virtually any cell type, can now help to overcome the limitations of animal models for certain disorders. The ability to model human diseases using cultured PSCs has revolutionized the ways in which we study monogenic, complex and epigenetic disorders, as well as early- and late-onset diseases. Several strategies are used to generate such disease models using either embryonic stem cells (ES cells) or patient-specific induced PSCs (iPSCs), creating new possibilities for the establishment of models and their use in drug screening.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peripheral thermosensation in mammals.

            Our ability to perceive temperature is crucial: it enables us to swiftly react to noxiously cold or hot objects and helps us to maintain a constant body temperature. Sensory nerve endings, upon depolarization by temperature-gated ion channels, convey electrical signals from the periphery to the CNS, eliciting a sense of temperature. In the past two decades, we have witnessed important advances in our understanding of mammalian thermosensation, with the identification and animal-model assessment of candidate molecular thermosensors - such as types of transient receptor potential (TRP) cation channels - involved in peripheral thermosensation. Ongoing research aims to understand how these miniature thermometers operate at the cellular and molecular level, and how they can be pharmacologically targeted to treat pain without disturbing vital thermoregulatory processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

              The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications.
                Bookmark

                Author and article information

                Journal
                The Journal of Experimental Biology
                J Exp Biol
                The Company of Biologists
                0022-0949
                1477-9145
                January 25 2019
                January 15 2019
                January 25 2019
                January 15 2019
                : 222
                : 2
                : jeb160606
                Article
                10.1242/jeb.160606
                30683731
                2c29060f-4708-4ab3-969d-b66b7c4d1c8b
                © 2019

                http://www.biologists.com/user-licence-1-1

                History

                Comments

                Comment on this article