7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications

      1 , 1 , 1
      Chemical Reviews
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references735

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.

          The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution. By preparing MoS2 nanoparticles of different sizes, we systematically varied the distribution of surface sites on MoS2 nanoparticles on Au(111), which we quantified with scanning tunneling microscopy. Electrocatalytic activity measurements for hydrogen evolution correlate linearly with the number of edge sites on the MoS2 catalyst.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in catalytic hydrogenation of carbon dioxide.

            Owing to the increasing emissions of carbon dioxide (CO(2)), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO(2) in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO(2). Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO(2), offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO(2) not only reduces the increasing CO(2) buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.

              Controlling the morphology of Pt nanostructures can provide a great opportunity to improve their catalytic properties and increase their activity on a mass basis. We synthesized Pd-Pt bimetallic nanodendrites consisting of a dense array of Pt branches on a Pd core by reducing K2PtCl4 with L-ascorbic acid in the presence of uniform Pd nanocrystal seeds in an aqueous solution. The Pt branches supported on faceted Pd nanocrystals exhibited relatively large surface areas and particularly active facets toward the oxygen reduction reaction (ORR), the rate-determining step in a proton-exchange membrane fuel cell. The Pd-Pt nanodendrites were two and a half times more active on the basis of equivalent Pt mass for the ORR than the state-of-the-art Pt/C catalyst and five times more active than the first-generation supportless Pt-black catalyst.
                Bookmark

                Author and article information

                Contributors
                Journal
                Chemical Reviews
                Chem. Rev.
                American Chemical Society (ACS)
                0009-2665
                1520-6890
                January 27 2021
                September 09 2020
                January 27 2021
                : 121
                : 2
                : 736-795
                Affiliations
                [1 ]Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
                Article
                10.1021/acs.chemrev.0c00436
                32902963
                2c4cb6a6-87e1-4eea-9b91-666e78f70998
                © 2021
                History

                Comments

                Comment on this article