3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An update on drug-drug interactions for care of the acutely ill in the era of COVID-19

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To provide key pharmacological concepts underlying drug-drug interactions (DDIs), a decision-making framework, and a list of DDIs that should be considered in the context of contemporary acutely ill patients with COVID-19.

          Summary

          DDIs are frequently encountered in the acutely ill. The implications of DDIs include either increased risk of drug toxicity or decreased effectiveness, which may have severe consequences in the acutely ill due to lower physiological and neurocognitive reserves in these patients. In addition, an array of additional therapies and drug classes have been used for COVID-19 that were not typically used in the acute care setting. In this update on DDIs in the acutely ill, we provide key pharmacological concepts underlying DDIs, including a discussion of the gastric environment, the cytochrome P-450 (CYP) isozyme system, transporters, and pharmacodynamics in relation to DDIs. We also provide a decision-making framework that elucidates the identification of DDIs, risk assessment, selection of alternative therapies, and monitoring. Finally, important DDIs pertaining to contemporary acute care clinical practice related to COVID-19 are discussed.

          Conclusion

          Interpreting and managing DDIs should follow a pharmacologically based approach and a systematic decision-making process to optimize patient outcomes.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report

          Abstract Background Coronavirus disease 2019 (Covid-19) is associated with diffuse lung damage. Glucocorticoids may modulate inflammation-mediated lung injury and thereby reduce progression to respiratory failure and death. Methods In this controlled, open-label trial comparing a range of possible treatments in patients who were hospitalized with Covid-19, we randomly assigned patients to receive oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days or to receive usual care alone. The primary outcome was 28-day mortality. Here, we report the preliminary results of this comparison. Results A total of 2104 patients were assigned to receive dexamethasone and 4321 to receive usual care. Overall, 482 patients (22.9%) in the dexamethasone group and 1110 patients (25.7%) in the usual care group died within 28 days after randomization (age-adjusted rate ratio, 0.83; 95% confidence interval [CI], 0.75 to 0.93; P<0.001). The proportional and absolute between-group differences in mortality varied considerably according to the level of respiratory support that the patients were receiving at the time of randomization. In the dexamethasone group, the incidence of death was lower than that in the usual care group among patients receiving invasive mechanical ventilation (29.3% vs. 41.4%; rate ratio, 0.64; 95% CI, 0.51 to 0.81) and among those receiving oxygen without invasive mechanical ventilation (23.3% vs. 26.2%; rate ratio, 0.82; 95% CI, 0.72 to 0.94) but not among those who were receiving no respiratory support at randomization (17.8% vs. 14.0%; rate ratio, 1.19; 95% CI, 0.91 to 1.55). Conclusions In patients hospitalized with Covid-19, the use of dexamethasone resulted in lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at randomization but not among those receiving no respiratory support. (Funded by the Medical Research Council and National Institute for Health Research and others; RECOVERY ClinicalTrials.gov number, NCT04381936; ISRCTN number, 50189673.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Remdesivir for the Treatment of Covid-19 — Final Report

            Abstract Background Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), none have yet been shown to be efficacious. Methods We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults hospitalized with Covid-19 with evidence of lower respiratory tract involvement. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. Results A total of 1063 patients underwent randomization. The data and safety monitoring board recommended early unblinding of the results on the basis of findings from an analysis that showed shortened time to recovery in the remdesivir group. Preliminary results from the 1059 patients (538 assigned to remdesivir and 521 to placebo) with data available after randomization indicated that those who received remdesivir had a median recovery time of 11 days (95% confidence interval [CI], 9 to 12), as compared with 15 days (95% CI, 13 to 19) in those who received placebo (rate ratio for recovery, 1.32; 95% CI, 1.12 to 1.55; P<0.001). The Kaplan-Meier estimates of mortality by 14 days were 7.1% with remdesivir and 11.9% with placebo (hazard ratio for death, 0.70; 95% CI, 0.47 to 1.04). Serious adverse events were reported for 114 of the 541 patients in the remdesivir group who underwent randomization (21.1%) and 141 of the 522 patients in the placebo group who underwent randomization (27.0%). Conclusions Remdesivir was superior to placebo in shortening the time to recovery in adults hospitalized with Covid-19 and evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19

              (2021)
              Abstract Background The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. Methods We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support–free days, on an ordinal scale combining in-hospital death (assigned a value of −1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support–free days, or both. Results Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support–free days was 10 (interquartile range, −1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, −1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. Conclusions In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.)
                Bookmark

                Author and article information

                Contributors
                Journal
                Am J Health Syst Pharm
                Am J Health Syst Pharm
                ajhp
                American Journal of Health-System Pharmacy: AJHP
                Oxford University Press (US )
                1079-2082
                1535-2900
                01 October 2023
                27 June 2023
                27 June 2023
                : 80
                : 19
                : 1301-1308
                Affiliations
                Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Camperdown, New South Wales, and Department of Pharmacy, Royal Prince Alfred Hospital , Camperdown, New South Wales, Australia
                Department of Pharmacy, Radboud University Medical Center, Nijmegen, and Radboudumc Institute for Health Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
                Department of Pharmacy Services, Dignity Health–St. Joseph’s Hospital & Medical Center , Phoenix, AZ, USA
                Department of Pharmacy, Radboud University Medical Center, Nijmegen, and Radboudumc Institute for Health Sciences Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center , Nijmegen, the Netherlands
                Author notes
                Address correspondence to Dr. Patanwala ( asad.patanwala@ 123456sydney.edu.au ). Twitter: @sidpatan
                Author information
                https://orcid.org/0000-0002-4524-9892
                Article
                zxad152
                10.1093/ajhp/zxad152
                10516707
                37368815
                2c5d205f-4089-4f96-be48-9f792475cd24
                © American Society of Health-System Pharmacists 2023.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 July 2023
                Page count
                Pages: 8
                Categories
                Clinical Consultation
                AcademicSubjects/MED00410

                critical care,cytochrome p-450 enzyme system,drug interactions,membrane transport proteins,patient safety,pharmacokinetics

                Comments

                Comment on this article