15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanomedicine applied to cardiovascular diseases: latest developments

      1 , 1 , 2 , 3
      Therapeutic Advances in Cardiovascular Disease
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d13871487e124">Cardiovascular diseases are a major cause of disability and they are currently responsible for a significant number of deaths in a large percentage of the world population. A large number of therapeutic options have been developed for the management of cardiovascular diseases. However, they are insufficient to stop or significantly reduce the progression of these diseases, and may produce unpleasant side effects. In this situation, the need arises to continue exploring new technologies and strategies in order to overcome the disadvantages and limitations of conventional therapeutic options. Thus, treatment of cardiovascular diseases has become one of the major focuses of scientific and technological development in recent times. More specifically, there have been important advances in the area of nanotechnology and the controlled release of drugs, destined to circumvent many limitations of conventional therapies for the treatment of diseases such as hyperlipidemia, hypertension, myocardial infarction, stroke and thrombosis. </p>

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Targeting atherosclerosis by using modular, multifunctional micelles.

          Subtle clotting that occurs on the luminal surface of atherosclerotic plaques presents a novel target for nanoparticle-based diagnostics and therapeutics. We have developed modular multifunctional micelles that contain a targeting element, a fluorophore, and, when desired, a drug component in the same particle. Targeting atherosclerotic plaques in ApoE-null mice fed a high-fat diet was accomplished with the pentapeptide cysteine-arginine-glutamic acid-lysine-alanine, which binds to clotted plasma proteins. The fluorescent micelles bind to the entire surface of the plaque, and notably, concentrate at the shoulders of the plaque, a location that is prone to rupture. We also show that the targeted micelles deliver an increased concentration of the anticoagulant drug hirulog to the plaque compared with untargeted micelles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes.

            Preventing atherosclerotic plaque destabilization and rupture is the most reasonable therapeutic strategy for acute myocardial infarction. Therefore, we tested the hypotheses that (1) inflammatory monocytes play a causative role in plaque destabilization and rupture and (2) the nanoparticle-mediated delivery of pitavastatin into circulating inflammatory monocytes inhibits plaque destabilization and rupture. We used a model of plaque destabilization and rupture in the brachiocephalic arteries of apolipoprotein E-deficient (ApoE(-/-)) mice fed a high-fat diet and infused with angiotensin II. The adoptive transfer of CCR2(+/+)Ly-6C(high) inflammatory macrophages, but not CCR2(-/-) leukocytes, accelerated plaque destabilization associated with increased serum monocyte chemoattractant protein-1 (MCP-1), monocyte-colony stimulating factor, and matrix metalloproteinase-9. We prepared poly(lactic-co-glycolic) acid nanoparticles that were incorporated by Ly-6G(-)CD11b(+) monocytes and delivered into atherosclerotic plaques after intravenous administration. Intravenous treatment with pitavastatin-incorporated nanoparticles, but not with control nanoparticles or pitavastatin alone, inhibited plaque destabilization and rupture associated with decreased monocyte infiltration and gelatinase activity in the plaque. Pitavastatin-incorporated nanoparticles inhibited MCP-1-induced monocyte chemotaxis and the secretion of MCP-1 and matrix metalloproteinase-9 from cultured macrophages. Furthermore, the nanoparticle-mediated anti-MCP-1 gene therapy reduced the incidence of plaque destabilization and rupture. The recruitment of inflammatory monocytes is critical in the pathogenesis of plaque destabilization and rupture, and nanoparticle-mediated pitavastatin delivery is a promising therapeutic strategy to inhibit plaque destabilization and rupture by regulating MCP-1/CCR2-dependent monocyte recruitment in this model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nanoparticle-Mediated Delivery of Irbesartan Induces Cardioprotection from Myocardial Ischemia-Reperfusion Injury by Antagonizing Monocyte-Mediated Inflammation

              Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction (AMI), in which the recruitment of inflammatory monocytes plays a causative role. Here we develop bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles incorporating irbesartan, an angiotensin II type 1 receptor blocker with a peroxisome proliferator-activated receptor (PPAR)γ agonistic effect (irbesartan-NP). In a mouse model of IR injury, intravenous PLGA nanoparticles distribute to the IR myocardium and monocytes in the blood and in the IR heart. Single intravenous treatment at the time of reperfusion with irbesartan-NP (3.0 mg kg−1 irbesartan), but not with control nanoparticles or irbesartan solution (3.0 mg kg−1), inhibits the recruitment of inflammatory monocytes to the IR heart, and reduces the infarct size via PPARγ-dependent anti-inflammatory mechanisms, and ameliorates left ventricular remodeling 21 days after IR. Irbesartan-NP is a novel approach to treat myocardial IR injury in patients with AMI.
                Bookmark

                Author and article information

                Journal
                Therapeutic Advances in Cardiovascular Disease
                Therapeutic Advances in Cardiovascular Disease
                SAGE Publications
                1753-9447
                1753-9455
                February 05 2017
                April 2017
                February 15 2017
                April 2017
                : 11
                : 4
                : 133-142
                Affiliations
                [1 ]Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias de la Alimentación, Bioquímicas y Farmacéuticas, Universidad Católica de Cuyo, Sede San Juan, Argentina
                [2 ]Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
                [3 ]Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500, Mendoza, Argentina
                Article
                10.1177/1753944717692293
                5933544
                28198204
                2c87c6d9-c604-4388-9dcc-ad617921603e
                © 2017

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article