0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Progress in Polyamine Research 

      Androgen Regulation of Ornithine Decarboxylase and S-Adenosylmethionine Decarboxylase Gene Expression

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Testosterone: a major determinant of extragenital sexual dimorphism.

          Sexual dimorphism in selected extragenital tissues is described with emphasis on the molecular basis of the differences. Testosterone rather than 5 alpha-dihydrotestosterone appears to be the major intracellular androgen in organs other than skin and reproductive tract, but other steroid metabolites and their receptors are required to produce the diverse tissue differences observed in males and females. There is also evidence that multiple hormones from several endocrine glands are required to act in concert with androgens to produce and maintain their effects. Although many of the consequences of sexual dimorphism, such as body size and strength, have been evident for centuries, other differences between males and females such as disease incidence, response to drugs and toxins, and the metabolism and assimilation of dietary constituents have only recently been discovered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concentrations of putrescine and polyamines and their enzymic synthesis during androgen-induced prostatic growth.

            1. Castration of adult rats resulted in marked decreases in the amounts of putrescine, spermidine and spermine in the ventral prostate gland. Spermidine concentrations decline rapidly over the first 11 days after androgen withdrawal, reaching a value of only 12% of normal controls. Spermine concentrations diminish more slowly, reaching 24% of normal within 11 days. The spermidine/spermine molar ratio falls from 0.9 to 0.46 under these conditions. Putrescine concentrations decrease by 70% at 7 days after castration and then remain constant for some days. 2. After daily injections of testosterone propionate to rats castrated 7 days previously, prostatic spermidine and putrescine concentrations increase significantly within 24h; normal or even greater values are observed within 8 and 4 days respectively. In contrast, the spermine concentration does not increase until 5 days after commencement of androgen treatment. 3. The activities of two enzymes involved in polyamine biosynthesis (ornithine decarboxylase and a putrescine-activated S-adenosyl-l-methionine decarboxylase system) were greatly decreased soon after castration: after 7 days the respective values were 15% of normal for ornithine decarboxylase and 7% of normal for putrescine-dependent decarboxylation of S-adenosyl-l-methionine. Injection of testosterone propionate into animals castrated 7 days previously induced a rapid increase in both enzymic activities: ornithine decarboxylase was doubled in 6h, and increased three- to four-fold within 48h, whereas the putrescine-dependent decarboxylation of S-adenosyl-l-methionine doubled in 3h and increased tenfold within 48h of commencement of daily androgen treatments. 4. The activity of these enzyme systems was very low in the ventral prostates of hypophysectomized rats and was increased by administration of testosterone in a manner similar to that found in castrated rats. 5. Alterations in the activity of two ventral-prostate enzymes involved in ornithine production (arginase) and utilization (ornithine-2-oxoglutarate transaminase) that result from changes in the androgenic status of rats are described. 6. The findings presented suggest that the activities of ornithine decarboxylase and the putrescine-dependent S-adenosyl-l-methionine decarboxylase system, rather than ornithine concentrations, are rate-limiting for the formation of putrescine and polyamines in rat ventral prostate. 7. The relation of polyamines to androgen-induced prostatic growth is discussed with particular reference to the biosynthesis of proteins and nucleic acids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Androgen induction of ornithine decarboxylase mRNA in mouse kidney as studied by complementary DNA.

              To investigate the mechanisms by which androgens regulate ornithine decarboxylase (OrnDCase; L-ornithine carboxy-lyase, EC 4.1.1.17) in mouse kidney, a cDNA clone encoding OrnDCase mRNA was prepared. Purification of OrnDCase mRNA from kidneys of androgen-treated mice was accomplished by immunoadsorption of renal polysomes to a protein A-Sepharose column and enrichment for poly(A)-containing RNA by oligo(dT)-cellulose. Double-stranded cDNA synthesized from this mRNA was inserted into the Pst I site of plasmid pBR322 by using oligo(dG . dC)-tailing and was propagated in Escherichia coli. Plasmids containing cDNA sequences coding for OrnDCase were identified by differential colony hybridization, by radioimmunological detection of OrnDCase-like antigens in bacterial cultures, and by cell-free translation of hybrid-selected mRNA followed by immunoprecipitation with monospecific OrnDCase antiserum. A restriction endonuclease fragment of the selected plasmid DNA (pODC54) was labeled by nick-translation and used to study changes in OrnDCase mRNA concentration. After a single dose of testosterone, renal OrnDCase mRNA concentration increased as soon as 6 hr and peaked 24 hr after steroid injection, as measured by RNA blot hybridization. Continuous androgen treatment for 4 days resulted in a 10- to 20-fold increase in OrnDCase mRNA concentration in normal animals, but no induction of this mRNA was detected in mice that have an inherent defect of the androgen receptor (testicular feminization). These results indicate that androgens regulate OrnD-Case synthesis in mouse kidney, at least in part, by increasing OrnDCase mRNA accumulation.
                Bookmark

                Author and book information

                Book Chapter
                1988
                : 1-11
                10.1007/978-1-4684-5637-0_1
                2cb45d88-caa9-4ed0-b9f8-2fd40f8161f3
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,594

                Cited by2