17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The influence of vascular endothelial growth factor-A and matrix metalloproteinase-2 and -9 in angiogenesis, metastasis, and prognosis of endometrial cancer

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiogenesis (the growth of new blood vessels) is essential in most of the body’s physiological processes, such as in the normal functioning of the endometrium during and after the menstrual cycle. Vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP) are the mostly expressed angiogenic factors, especially, during the process of endometrial degeneration and remodeling. In carcinogenesis, tumor hypoxia-induced factors, through the process of “angiogenic switch”, stimulate the production of angiogenic factors, particularly VEGF and MMP. Subsequently, these angiogenic factors are associated with degradation, differentiation, proliferation, and migration of vascular endothelial cells, enhancing the formation of new blood vessels to supply the tumor with oxygen and nutrients. This process is equally significant for tumor development and metastasis. Hence, like in other cancers, the overexpression of MMP and VEGF in endometrial cancer (EC) seems to play a significant role in its tumorigenesis and metastasis. This research will discuss the influence of MMP and VEGF on angiogenesis, metastasis, and the prognosis of EC as well as the clinical importance of the factors in the diagnosis of EC.

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Physiology and pathophysiology of matrix metalloproteases

          Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn2+ ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with respect to substrate specificity, cellular and tissue localization, membrane binding and regulation that make this a very versatile family of enzymes with a multitude of physiological functions, many of which are still not fully understood. Essentially, all members of the MMP family have been linked to disease development, notably to cancer metastasis, chronic inflammation and the ensuing tissue damage as well as to neurological disorders. This has stimulated a flurry of studies into MMP inhibitors as therapeutic agents, as well as into measuring MMP levels as diagnostic or prognostic markers. As with most protein families, deciphering the function(s) of MMPs is difficult, as they can modify many proteins. Which of these reactions are physiologically or pathophysiologically relevant is often not clear, although studies on knockout animals, human genetic and epigenetic, as well as biochemical studies using natural or synthetic inhibitors have provided insight to a great extent. In this review, we will give an overview of 23 members of the human MMP family and describe functions, linkages to disease and structural and mechanistic features. MMPs can be grouped into soluble (including matrilysins) and membrane-anchored species. We adhere to the ‘MMP nomenclature’ and provide the reader with reference to the many, often diverse, names for this enzyme family in the introduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue.

            Recruitment and retention of leukocytes at a site of blood vessel growth are crucial for proper angiogenesis and subsequent tissue perfusion. Although critical for many aspects of regenerative medicine, the mechanisms of leukocyte recruitment to and actions at sites of angiogenesis are not fully understood. In this study, we investigated the signals attracting leukocytes to avascular transplanted pancreatic islets and leukocyte actions at the engraftment site. Expression of the angiogenic stimulus VEGF-A by mouse pancreatic islets was elevated shortly after syngeneic transplantation to muscle. High levels of leukocytes, predominantly CD11b(+)/Gr-1(+)/CXCR4(hi) neutrophils, were observed at the site of engraftment, whereas VEGF-A-deficient islets recruited only half of the amount of leukocytes when transplanted. Acute VEGF-A exposure of muscle increased leukocyte extravasation but not the levels of SDF-1α. VEGF-A-recruited neutrophils expressed 10 times higher amounts of MMP-9 than neutrophils recruited to an inflammatory stimulus. Revascularization of islets transplanted to MMP-9-deficient mice was impaired because blood vessels initially failed to penetrate grafts, and after 2 weeks vascularity was still disturbed. This study demonstrates that VEGF-A recruits a proangiogenic circulating subset of CD11b(+)/Gr-1(+) neutrophils that are CXCR4(hi) and deliver large amounts of the effector protein MMP-9, required for islet revascularization and functional integration after transplantation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis.

              Metalloproteases are important in many aspects of biology, ranging from cell proliferation, differentiation and remodeling of the extracellular matrix (ECM) to vascularization and cell migration. These events occur several times during organogenesis in both normal development and during tumor progression. Mechanisms of metalloprotease action underlying these events include the proteolytic cleavage of growth factors so that they can become available to cells not in direct physical contact, degradation of the ECM so that founder cells can move across tissues into nearby stroma, and regulated receptor cleavage to terminate migratory signaling. Most of these processes require a delicate balance between the functions of matrix metalloproteases (MMPs) or metalloprotease-disintegrins (ADAMs) and natural tissue inhibitors of metalloproteases (TIMPs). In this review, we discuss recent progress in identifying an essential role for metalloproteases in axon outgrowth, as an example of a focal invasive event. We also discuss the evolving concept of how MMPs might regulate stem cell fate during tumor development.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2017
                19 September 2017
                : 10
                : 4617-4624
                Affiliations
                Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
                Author notes
                Correspondence: Hongbo Wang, Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277, Jiefang Avenue, Jiangan District, Wuhan 430022, China, Tel/fax +86 27 8572 6301, Email whbdf14@ 123456yahoo.com
                Article
                ott-10-4617
                10.2147/OTT.S132558
                5614795
                29033580
                2cdaf642-6428-448e-a90e-11287d92ec32
                © 2017 Mahecha and Wang. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Oncology & Radiotherapy
                angiogenic switch,angiogenic factors,endometrioid endometrial carcinoma,microvascular density

                Comments

                Comment on this article