72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-Q photonic nanocavity in a two-dimensional photonic crystal.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photonic cavities that strongly confine light are finding applications in many areas of physics and engineering, including coherent electron-photon interactions, ultra-small filters, low-threshold lasers, photonic chips, nonlinear optics and quantum information processing. Critical for these applications is the realization of a cavity with both high quality factor, Q, and small modal volume, V. The ratio Q/V determines the strength of the various cavity interactions, and an ultra-small cavity enables large-scale integration and single-mode operation for a broad range of wavelengths. However, a high-Q cavity of optical wavelength size is difficult to fabricate, as radiation loss increases in inverse proportion to cavity size. With the exception of a few recent theoretical studies, definitive theories and experiments for creating high-Q nanocavities have not been extensively investigated. Here we use a silicon-based two-dimensional photonic-crystal slab to fabricate a nanocavity with Q = 45,000 and V = 7.0 x 10(-14) cm3; the value of Q/V is 10-100 times larger than in previous studies. Underlying this development is the realization that light should be confined gently in order to be confined strongly. Integration with other photonic elements is straightforward, and a large free spectral range of 100 nm has been demonstrated.

          Related collections

          Author and article information

          Journal
          Nature
          Nature
          Springer Science and Business Media LLC
          1476-4687
          0028-0836
          Oct 30 2003
          : 425
          : 6961
          Affiliations
          [1 ] Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
          Article
          nature02063
          10.1038/nature02063
          14586465
          2d30f50d-362f-4d41-96c3-dbaed3b917d6
          History

          Comments

          Comment on this article