2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ML-DSTnet: A Novel Hybrid Model for Breast Cancer Diagnosis Improvement Based on Image Processing Using Machine Learning and Dempster–Shafer Theory

      research-article
      1 , 1 , , 2
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medical intelligence detection systems have changed with the help of artificial intelligence and have also faced challenges. Breast cancer diagnosis and classification are part of this medical intelligence system. Early detection can lead to an increase in treatment options. On the other hand, uncertainty is a case that has always been with the decision-maker. The system's parameters cannot be accurately estimated, and the wrong decision is made. To solve this problem, we have proposed a method in this article that reduces the ignorance of the problem with the help of Dempster–Shafer theory so that we can make a better decision. This research on the MIAS dataset, based on image processing machine learning and Dempster–Shafer mathematical theory, tries to improve the diagnosis and classification of benign, malignant masses. We first determine the results of the diagnosis of mass type with MLP by using the texture feature and CNN. We combine the results of the two classifications with Dempster–Shafer theory and improve its accuracy. The obtained results show that the proposed approach has better performance than others based on evaluation criteria such as accuracy of 99.10%, sensitivity of 98.4%, and specificity of 100%.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          Textural Features for Image Classification

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015

            IMPORTANCE Cancer is the second leading cause of death worldwide. Current estimates on the burden of cancer are needed for cancer control planning. OBJECTIVE To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 32 cancers in 195 countries and territories from 1990 to 2015. EVIDENCE REVIEW Cancer mortality was estimated using vital registration system data, cancer registry incidence data (transformed to mortality estimates using separately estimated mortality to incidence [MI] ratios), and verbal autopsy data. Cancer incidence was calculated by dividing mortality estimates through the modeled MI ratios. To calculate cancer prevalence, MI ratios were used to model survival. To calculate YLDs, prevalence estimates were multiplied by disability weights. The YLLs were estimated by multiplying age-specific cancer deaths by the reference life expectancy. DALYs were estimated as the sum of YLDs and YLLs. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility. Countries were categorized by SDI quintiles to summarize results. FINDINGS In 2015, there were 17.5 million cancer cases worldwide and 8.7 million deaths. Between 2005 and 2015, cancer cases increased by 33%, with population aging contributing 16%, population growth 13%, and changes in age-specific rates contributing 4%. For men, the most common cancer globally was prostate cancer (1.6 million cases). Tracheal, bronchus, and lung cancer was the leading cause of cancer deaths and DALYs in men (1.2 million deaths and 25.9 million DALYs). For women, the most common cancer was breast cancer (2.4 million cases). Breast cancer was also the leading cause of cancer deaths and DALYs for women (523 000 deaths and 15.1 million DALYs). Overall, cancer caused 208.3 million DALYs worldwide in 2015 for both sexes combined. Between 2005 and 2015, age-standardized incidence rates for all cancers combined increased in 174 of 195 countries or territories. Age-standardized death rates (ASDRs) for all cancers combined decreased within that timeframe in 140 of 195 countries or territories. Countries with an increase in the ASDR due to all cancers were largely located on the African continent. Of all cancers, deaths between 2005 and 2015 decreased significantly for Hodgkin lymphoma (−6.1% [95% uncertainty interval (UI), −10.6% to −1.3%]). The number of deaths also decreased for esophageal cancer, stomach cancer, and chronic myeloid leukemia, although these results were not statistically significant. CONCLUSION AND RELEVANCE As part of the epidemiological transition, cancer incidence is expected to increase in the future, further straining limited health care resources. Appropriate allocation of resources for cancer prevention, early diagnosis, and curative and palliative care requires detailed knowledge of the local burden of cancer. The GBD 2015 study results demonstrate that progress is possible in the war against cancer. However, the major findings also highlight an unmet need for cancer prevention efforts, including tobacco control, vaccination, and the promotion of physical activity and a healthy diet.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Upper and Lower Probabilities Induced by a Multivalued Mapping

                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Intell Neurosci
                Comput Intell Neurosci
                cin
                Computational Intelligence and Neuroscience
                Hindawi
                1687-5265
                1687-5273
                2023
                2 November 2023
                : 2023
                : 7510419
                Affiliations
                1Department of Computer Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran
                2Department of Computer Engineering, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
                Author notes

                Academic Editor: Dalin Zhang

                Author information
                https://orcid.org/0000-0002-2181-4797
                Article
                10.1155/2023/7510419
                10635746
                2d8f5a60-9785-4aee-ab6b-a0e3579f51f7
                Copyright © 2023 Mohsen Eftekharian et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 August 2022
                : 18 November 2022
                : 25 April 2023
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article