1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthesis and Anticancer Activity of [RuCl 26-arene)(aroylthiourea)] Complexes—High Activity against the Human Neuroblastoma (IMR-32) Cancer Cell Line

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eight new organometallic Ru(II)–arene complexes of the type [RuCl 26-arene)(η 1- S-aroylthiourea)] (arene = p-cymene or benzene) were synthesized in order to evaluate the effect of the arene moiety and the substituent of the aroylthiourea ligand on the cytotoxicity of the complexes. The ligands (L1 and L2) and complexes ( 1–8) were characterized using analytical and spectroscopic (UV–visible, infrared, 1H NMR, 13C NMR, and mass) methods. The structure of the ligands (L1 and L2) and complexes ( 1 and 3–6) was obtained from single-crystal X-ray diffraction studies. The cytotoxicity of the complexes was evaluated against four different cancer cell lines: MCF-7 (breast), COLO 205 (colon), A549 (lung), and IMR-32 (neuroblastoma). All the complexes showed good cytotoxicity and the highest was in the IMR-32 cell line, which articulates the specificity of these complexes toward the IMR-32 cancer cell line. The complexes 5, 7, and 8 exhibited remarkable cytotoxicity in the entire cancer cell lines tested, which was comparable with the standard drug, cisplatin. The anticancer mechanism of the complexes 3 and 7 in IMR-32 cells was evaluated by bright-field microscopy, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), DNA damage, and caspase-3 analyses. The cells treated with the complexes showed upregulated caspase-3 compared to the control, and it was found that ROS and MMP were dose-dependent on analysis. Also, bright-field microscopy and 4′,6-diamidino-2-phenylindole (DAPI) staining have correspondingly shown cellular membrane blebbing and DNA damage, which were morphological hallmarks of apoptosis. The study concluded that the complexes promoted the oxidative stress-mediated apoptotic death of the cancer cells through the generation of intracellular ROS, depletion of MMP, and damage of the nuclear material.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader.

          Oxidative stress (OS) has been implicated in various degenerative diseases in aging. In an attempt to quantify OS in a cell model, we examined OS induced by incubating for 30 min with various free radical generators in PC12 cells by using the dichlorofluorescein (DCF) assay, modified for use by a fluorescent microplate reader. The nonfluorescent fluorescin derivatives (dichlorofluorescin, DCFH), after being oxidized by various oxidants, will become DCF and emit fluorescence. By quantifying the fluorescence, we were able to quantify the OS. Our results indicated that the fluorescence varied linearly with increasing concentrations (between 0.1 and 1 mM) of H2O2 and 2,2'-azobios(2-amidinopropane) dihydrochloride (AAPH; a peroxyl radical generator). By contrast, the fluorescence varied as a nonlinear response to increasing concentrations of 3-morpholinosydnonimine hydrochloride (SIN-1; a peroxynitrite generator), sodium nitroprusside (SNP; a nitric oxide generator), and dopamine. Dopamine had a biphasic effect; it decreased the DCF fluorescence, thus acting as an antioxidant, at concentrations <500 microM in cells, but acted as a pro-oxidant by increasing the fluorescence at 1 mM. While SNP was not a strong pro-oxidant, SIN-1 was the most potent pro-oxidant among those tested, inducing a 70 times increase of fluorescence at a concentration of 100 microM compared with control. Collectively, due to its indiscriminate nature to various free radicals, DCF can be very useful in quantifying overall OS in cells, especially when used in conjunction with a fluorescent microplate reader. This method is reliable and efficient for evaluating the potency of pro-oxidants and can be used to evaluate the efficacy of antioxidants against OS in cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stimuli-Responsive Therapeutic Metallodrugs

            The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Toward Multi-Targeted Platinum and Ruthenium Drugs—A New Paradigm in Cancer Drug Treatment Regimens?

                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                04 April 2019
                30 April 2019
                : 4
                : 4
                : 6245-6256
                Affiliations
                []Department of Chemistry, National Institute of Technology , Tiruchirappalli 620015, Tamil Nadu, India
                []DRDO-BU-Centre for Life Sciences, Bharathiar Univeristy Campus, Coimbatore 641046, Tamil Nadu, India
                [§ ]Department of Chemistry, National Institute of Technology , Warangal 506004, Telangana, India
                []Department of Chemistry, Texas A & M University , College Station, Texas 77842, United States
                Author notes
                [* ]E-mail: kar@ 123456nitt.edu .
                Article
                10.1021/acsomega.9b00349
                6648990
                31459766
                2d95f722-b338-4390-82e3-800751291fd9
                Copyright © 2019 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 06 February 2019
                : 22 March 2019
                Categories
                Article
                Custom metadata
                ao9b00349
                ao-2019-00349p

                Comments

                Comment on this article