0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spin Change of Asteroid 2012 TC4 probably by Radiation Torques

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asteroid 2012 TC4 is a small (\(\sim\)10 m) near-Earth object that was observed during its Earth close approaches in 2012 and 2017. Earlier analyses of light curves revealed its excited rotation state. We collected all available photometric data from the two apparitions to reconstruct its rotation state and convex shape model. We show that light curves from 2012 and 2017 cannot be fitted with a single set of model parameters -- the rotation and precession periods are significantly different for these two data sets and they must have changed between or during the two apparitions. Nevertheless, we could fit all light curves with a dynamically self-consistent model assuming that the spin states of 2012 TC4 in 2012 and 2017 were different. To interpret our results, we developed a numerical model of its spin evolution in which we included two potentially relevant perturbations: (i) gravitational torque due to the Sun and Earth, and (ii) radiation torque known as the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. Despite our model simplicity, we found that the role of gravitational torques is negligible. Instead, we argue that the observed change of its spin state may be plausibly explained as a result of the YORP torque. To strengthen this interpretation we verify that (i) the internal energy dissipation due to material inelasticity, and (ii) an impact with a sufficiently large interplanetary particle are both highly unlikely causes its observed spin state change. If true, this is the first case when the YORP effect has been detected for a tumbling body.

          Related collections

          Author and article information

          Journal
          16 December 2020
          Article
          2012.08771
          2df0641c-492f-430e-aa13-a1c359cf737b

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          29 pages, 17 figures, Accepted for publication in AJ
          astro-ph.EP

          Planetary astrophysics
          Planetary astrophysics

          Comments

          Comment on this article