47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gene Expression Profiling of Plants under Salt Stress

      , , ,
      Critical Reviews in Plant Sciences
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Genes and salt tolerance: bringing them together.

          Rana Munns (2005)
          Salinity tolerance comes from genes that limit the rate of salt uptake from the soil and the transport of salt throughout the plant, adjust the ionic and osmotic balance of cells in roots and shoots, and regulate leaf development and the onset of senescence. This review lists some candidate genes for salinity tolerance, and draws together hypotheses about the functions of these genes and the specific tissues in which they might operate. Little has been revealed by gene expression studies so far, perhaps because the studies are not tissue-specific, and because the treatments are often traumatic and unnatural. Suggestions are made to increase the value of molecular studies in identifying genes that are important for salinity tolerance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Plant salt tolerance

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of ion homeostasis under salt stress.

              When under salt stress, plants maintain a high concentration of K(+) and a low concentration of Na(+) in the cytosol. They do this by regulating the expression and activity of K(+) and Na(+) transporters and of H(+) pumps that generate the driving force for transport. Although salt-stress sensors remain elusive, some of the intermediary signaling components have been identified. Evidence suggests that a protein kinase complex consisting of the myristoylated calcium-binding protein SOS3 and the serine/threonine protein kinase SOS2 is activated by a salt-stress-elicited calcium signal. The protein kinase complex then phosphorylates and activates various ion transporters, such as the plasma membrane Na(+)/H(+) antiporter SOS1.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Plant Sciences
                Critical Reviews in Plant Sciences
                Informa UK Limited
                0735-2689
                1549-7836
                September 2011
                September 2011
                : 30
                : 5
                : 435-458
                Article
                10.1080/07352689.2011.605739
                2e18c076-d2c0-480f-9639-a67061cd15ee
                © 2011
                History

                Comments

                Comment on this article