8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp

      , , , ,
      Marine Ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation by resistance.

          Brad McRae (2006)
          Despite growing interest in the effects of landscape heterogeneity on genetic structuring, few tools are available to incorporate data on landscape composition into population genetic studies. Analyses of isolation by distance have typically either assumed spatial homogeneity for convenience or applied theoretically unjustified distance metrics to compensate for heterogeneity. Here I propose the isolation-by-resistance (IBR) model as an alternative for predicting equilibrium genetic structuring in complex landscapes. The model predicts a positive relationship between genetic differentiation and the resistance distance, a distance metric that exploits precise relationships between random walk times and effective resistances in electronic networks. As a predictor of genetic differentiation, the resistance distance is both more theoretically justified and more robust to spatial heterogeneity than Euclidean or least cost path-based distance measures. Moreover, the metric can be applied with a wide range of data inputs, including coarse-scale range maps, simple maps of habitat and nonhabitat within a species' range, or complex spatial datasets with habitats and barriers of differing qualities. The IBR model thus provides a flexible and efficient tool to account for habitat heterogeneity in studies of isolation by distance, improve understanding of how landscape characteristics affect genetic structuring, and predict genetic and evolutionary consequences of landscape change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circuit theory predicts gene flow in plant and animal populations.

            Maintaining connectivity for broad-scale ecological processes like dispersal and gene flow is essential for conserving endangered species in fragmented landscapes. However, determining which habitats should be set aside to promote connectivity has been difficult because existing models cannot incorporate effects of multiple pathways linking populations. Here, we test an ecological connectivity model that overcomes this obstacle by borrowing from electrical circuit theory. The model vastly improves gene flow predictions because it simultaneously integrates all possible pathways connecting populations. When applied to data from threatened mammal and tree species, the model consistently outperformed conventional gene flow models, revealing that barriers were less important in structuring populations than previously thought. Circuit theory now provides the best-justified method to bridge landscape and genetic data, and holds much promise in ecology, evolution, and conservation planning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using circuit theory to model connectivity in ecology, evolution, and conservation.

              Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.
                Bookmark

                Author and article information

                Journal
                Marine Ecology
                Mar Ecol
                Wiley-Blackwell
                01739565
                December 2016
                December 23 2016
                : 37
                : 6
                : 1336-1344
                Article
                10.1111/maec.12343
                2e9a8eeb-9cdf-49c7-a997-6cdd41b55b09
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article