0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Briancoppinsia, a new coelomycetous genus of Arthoniaceae (Arthoniales) for the lichenicolous Phoma cytospora, with a key to this and similar taxa

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: not found
          • Article: not found

          Pcr Primers for the Amplification of Mitochondrial Small Subunit Ribosomal DNA of Lichen-forming Ascomycetes

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta

            We present a revised phylogeny of lichenised Dothideomyceta (Arthoniomycetes and Dothideomycetes) based on a combined data set of nuclear large subunit (nuLSU) and mitochondrial small subunit (mtSSU) rDNA data. Dothideomyceta is supported as monophyletic with monophyletic classes Arthoniomycetes and Dothideomycetes; the latter, however, lacking support in this study. The phylogeny of lichenised Arthoniomycetes supports the current division into three families: Chrysothrichaceae (Chrysothrix), Arthoniaceae (Arthonia s. l., Cryptothecia, Herpothallon), and Roccellaceae (Chiodecton, Combea, Dendrographa, Dichosporidium, Enterographa, Erythrodecton, Lecanactis, Opegrapha, Roccella, Roccellographa, Schismatomma, Simonyella). The widespread and common Arthonia caesia is strongly supported as a (non-pigmented) member of Chrysothrix. Monoblastiaceae, Strigulaceae, and Trypetheliaceae are recovered as unrelated, monophyletic clades within Dothideomycetes. Also, the genera Arthopyrenia (Arthopyreniaceae) and Cystocoleus and Racodium (Capnodiales) are confirmed as Dothideomycetes but unrelated to each other. Mycomicrothelia is shown to be unrelated to Arthopyrenia s.str., but is supported as a monophyletic clade sister to Trypetheliaceae, which is supported by hamathecium characters. The generic concept in several groups is in need of revision, as indicated by non-monophyly of genera, such as Arthonia, Astrothelium, Cryptothecia, Cryptothelium, Enterographa, Opegrapha, and Trypethelium in our analyses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Towards a new classification of the Arthoniales (Ascomycota) based on a three-gene phylogeny focussing on the genus Opegrapha.

              A multi-locus phylogenetic study of the order Arthoniales is presented here using the nuclear ribosomal large subunit (nuLSU), the second largest subunit of RNA polymerase II (RPB2) and the mitochondrial ribosomal small subunit (mtSSU). These genes were sequenced from 43 specimens or culture isolates representing 33 species from this order, 16 of which were from the second largest genus, Opegrapha. With the inclusion of sequences from GenBank, ten genera and 35 species are included in this study, representing about 18% of the genera and ca 3% of the species of this order. Our study revealed the homoplastic nature of morphological characters traditionally used to circumscribe genera within the Arthoniales, such as exciple carbonization and ascomatal structure. The genus Opegrapha appears polyphyletic, species of that genus being nested in all the major clades identified within Arthoniales. The transfer of O. atra and O. calcarea to the genus Arthonia will allow this genus and family Arthoniaceae to be recognized as monophyletic. The genus Enterographa was also found to be polyphyletic. Therefore, the following new combinations are needed: Arthonia calcarea (basionym: O. calcarea), and O. anguinella (basionym: Stigmatidium anguinellum); and the use of the names A. atra and Enterographa zonata are proposed here. The simultaneous use of a mitochondrial gene and two nuclear genes led to the detection of what seems to be a case of introgression of a mitochondrion from one species to another (mitochondrion capture; cytoplasmic gene flow) resulting from hybridization.
                Bookmark

                Author and article information

                Journal
                Fungal Diversity
                Fungal Diversity
                Springer Nature
                1560-2745
                1878-9129
                January 2012
                May 25 2011
                January 2012
                : 52
                : 1
                : 1-12
                Article
                10.1007/s13225-011-0105-1
                2eaa2d0f-b194-44b0-b24c-b185322f3ead
                © 2012
                History

                Comments

                Comment on this article