57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telencephalic patterning centers, defined by the discrete expression domains of distinct morphogens, Fgfs in the commissural plate (CoP), Wnts and Bmps in the cortical hem, and a ventral domain of Sonic hedgehog ( Shh), are postulated to establish during development the initial patterning of the telencepahlon, including the neocortex. We show that the expression patterns of Sp5, Sp8, and Sp9, members of the Sp8-like family that are homologues of Drosophila buttonhead, correlate during early embryonic development with these three telencephalic patterning centers. To study potential functional relationships, we focused on Sp8, because it is transiently expressed in the CoP coincident with the expression of Fgf8, a morphogen implicated in area patterning of the neocortex. We also show that Sp8 is expressed in cortical progenitors in a high to low anterior-medial to posterior-lateral gradient across the ventricular zone. We used in utero electroporation of full-length and chimeric expression constructs to perform gain-of-function and loss-of-function studies of interactions between Sp8 and Fgf8 and their roles in cortical area patterning. We show that Fgf8 and Sp8 exhibit reciprocal induction in vivo in the embryonic telencephalon. Sp8 also induces downstream targets of Fgf8, including ETS transcription factors. In vitro assays show that Sp8 binds Fgf8 regulatory elements and is a direct transcriptional activator of Fgf8. We also show that Sp8 induction of Fgf8 is repressed by Emx2 in vitro, suggesting a mechanism to limit Fgf8 expression to the CoP. In vivo expression of a dominant negative Sp8 in the CoP indicates that Sp8 maintains expression of Fgf8 and also its effect on area patterning. Ectopic expression of Sp8 in anterior or posterior cortical poles induces significant anterior or posterior shifts in area patterning, respectively, paralleled by changes in expression of gene markers of positional identity. These effects of Sp8 on area patterning oppose those induced by ectopic expression of Fgf8, suggesting that in parallel to regulating Fgf8 expression, Sp8 also activates a distinct signaling pathway for cortical area patterning. In summary, Sp8 and Fgf8 robustly induce one another, and may act to balance the anterior-posterior area patterning of the cortex.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          A long, remarkable journey: tangential migration in the telencephalon.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient gene transfer into the embryonic mouse brain using in vivo electroporation.

            Mouse genetic manipulation has provided an excellent system to characterize gene function in numerous contexts. A number of mutants have been produced by using transgenic, gene knockout, and mutagenesis techniques. Nevertheless, one limitation is that it is difficult to express a gene in vivo in a restricted manner (i.e., spatially and temporally), because the number of available enhancers and promoters which can confine gene expression is limited. We have developed a novel method to introduce DNA into in/exo utero embryonic mouse brains at various stages by using electroporation. More than 90% of operated embryos survived, and more than 65% of these expressed the introduced genes in restricted regions of the brain. Expression was maintained even after birth, 6 weeks after electroporation. The use of fluorescent protein genes clearly visualized neuronal morphologies in the brain. Moreover, it was possible to transfect three different DNA vectors into the same cells. Thus, this method will be a powerful tool to characterize gene function in various settings due to its high efficiency and localized gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neocortex patterning by the secreted signaling molecule FGF8.

              A classic model proposes that the mammalian neocortex is divided into areas early in neurogenesis, but the molecular mechanisms that generate the area map have been elusive. Here we provide evidence that FGF8 regulates development of the map from a source in the anterior telencephalon. Using electroporation-mediated gene transfer in mouse embryos, we show that augmenting the endogenous anterior FGF8 signal shifts area boundaries posteriorly, reducing the signal shifts them anteriorly, and introducing a posterior source of FGF8 elicits partial area duplications, revealed by ectopic somatosensory barrel fields. These findings support a role for FGF signaling in specifying positional identity in the neocortex.
                Bookmark

                Author and article information

                Journal
                Neural Develop
                Neural Development
                BioMed Central (London )
                1749-8104
                2007
                17 May 2007
                : 2
                : 10
                Affiliations
                [1 ]Molecular Neurobiology Laboratory, The Salk Institute, N. Torrey Pines Road, La Jolla, CA 92037, USA
                [2 ]Gene Expression Laboratory, The Salk Institute, N. Torrey Pines Road, La Jolla, CA 92037, USA
                Article
                1749-8104-2-10
                10.1186/1749-8104-2-10
                1890288
                17509151
                2eb3ad5b-a26f-4fba-b73b-a42f5a602785
                Copyright © 2007 Sahara et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 March 2007
                : 17 May 2007
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article