6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Chinese Herbal Formula Suppresses Colorectal Cancer Migration and Vasculogenic Mimicry Through ROS/HIF-1 α/MMP2 Pathway in Hypoxic Microenvironment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various malignant tumors, including colorectal cancer, have the ability to form functional blood vessels for tumor growth and metastasis. Vasculogenic mimicry (VM) refers to the ability of highly invasive tumor cells to link each other to form vessels, which is associated with poor cancer prognosis. However, the antitumor VM agents are still lacking in the clinic. Astragalus Atractylodes mixture (AAM), a traditional Chinese medicine, has shown to inhibit VM formation; however the exact mechanism is not completely clarified. In this study, we found that HCT-116 and LoVo could form a VM network. Additionally, hypoxia increases the intracellular reactive oxygen species (ROS) level and accelerates migration, VM formation in colorectal cancer cells, while N-Acetylcysteine (NAC) could reverse these phenomena. Notably, further mechanical exploration confirmed that the matrix metalloprotease 2 (MMP2) induction is ROS dependent under hypoxic condition. On the basis, we found that AAM could effectively inhibit hypoxia-induced ROS generation, migration, VM formation as well as HIF-1 α and MMP2 expression. In vivo, AAM significantly inhibits metastasis of colorectal cancer in murine lung-metastasis model. Taken together, these results verified that AAM effectively inhibits migration and VM formation by suppressing ROS/HIF-1 α/MMP2 pathway in colorectal cancer under hypoxic condition, suggesting AAM could serve as a therapeutic agent to inhibit VM formation in human colorectal cancer.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry.

          Tissue sections from aggressive human intraocular (uveal) and metastatic cutaneous melanomas generally lack evidence of significant necrosis and contain patterned networks of interconnected loops of extracellular matrix. The matrix that forms these loops or networks may be solid or hollow. Red blood cells have been detected within the hollow channel components of this patterned matrix histologically, and these vascular channel networks have been detected in human tumors angiographically. Endothelial cells were not identified within these matrix-embedded channels by light microscopy, by transmission electron microscopy, or by using an immunohistochemical panel of endothelial cell markers (Factor VIII-related antigen, Ulex, CD31, CD34, and KDR[Flk-1]). Highly invasive primary and metastatic human melanoma cells formed patterned solid and hollow matrix channels (seen in tissue sections of aggressive primary and metastatic human melanomas) in three-dimensional cultures containing Matrigel or dilute Type I collagen, without endothelial cells or fibroblasts. These tumor cell-generated patterned channels conducted dye, highlighting looping patterns visualized angiographically in human tumors. Neither normal melanocytes nor poorly invasive melanoma cells generated these patterned channels in vitro under identical culture conditions, even after the addition of conditioned medium from metastatic pattern-forming melanoma cells, soluble growth factors, or regimes of hypoxia. Highly invasive and metastatic human melanoma cells, but not poorly invasive melanoma cells, contracted and remodeled floating hydrated gels, providing a biomechanical explanation for the generation of microvessels in vitro. cDNA microarray analysis of highly invasive versus poorly invasive melanoma tumor cells confirmed a genetic reversion to a pluripotent embryonic-like genotype in the highly aggressive melanoma cells. These observations strongly suggest that aggressive melanoma cells may generate vascular channels that facilitate tumor perfusion independent of tumor angiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.

            Multicellular organisms initiate adaptive responses when oxygen (O(2)) availability decreases, but the underlying mechanism of O(2) sensing remains elusive. We find that functionality of complex III of the mitochondrial electron transport chain (ETC) is required for the hypoxic stabilization of HIF-1 alpha and HIF-2 alpha and that an increase in reactive oxygen species (ROS) links this complex to HIF-alpha stabilization. Using RNAi to suppress expression of the Rieske iron-sulfur protein of complex III, hypoxia-induced HIF-1 alpha stabilization is attenuated, and ROS production, measured using a novel ROS-sensitive FRET probe, is decreased. These results demonstrate that mitochondria function as O(2) sensors and signal hypoxic HIF-1 alpha and HIF-2 alpha stabilization by releasing ROS to the cytosol.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.

              Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic stabilization of HIF-1 alpha protein. Fibroblasts from a patient with Leigh's syndrome, which display residual levels of electron transport activity and are incompetent in oxidative phosphorylation, stabilize HIF-1 alpha during hypoxia. The expression of glutathione peroxidase or catalase, but not superoxide dismutase 1 or 2, prevents the hypoxic stabilization of HIF-1 alpha. These findings provide genetic evidence that oxygen sensing is dependent on mitochondrial-generated reactive oxygen species (ROS) but independent of oxidative phosphorylation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                15 May 2020
                2020
                : 11
                : 705
                Affiliations
                [1] 1Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
                [2] 2Graduate School of Shanghai University of Traditional Chinese Medicine , Shanghai, China
                [3] 3Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China
                Author notes

                Edited by: Anthony Booker, University of Westminster, United Kingdom

                Reviewed by: Aljawharah Alqathama, Umm al-Qura University, Saudi Arabia; Daniel Delgado-Bellido, Consejo Superior de Investigaciones Científicas (CSIC), Spain

                *Correspondence: Fenggang Hou, fghou555@ 123456126.com

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                †These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fphar.2020.00705
                7242742
                32499699
                2ecb8a19-3a60-49e4-b6c6-8db44b26fd0c
                Copyright © 2020 Zong, Tang, Li, Han, Shi, Ruan and Hou

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 July 2019
                : 29 April 2020
                Page count
                Figures: 11, Tables: 3, Equations: 0, References: 66, Pages: 16, Words: 6187
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                astragalus atractylodes mixture,colorectal cancer,migration,vasculogenic mimicry,hypoxia

                Comments

                Comment on this article