10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes—a systematic review

      review-article
      1 , 2 , , 1 , 2 ,
      Pflugers Archiv
      Springer Berlin Heidelberg
      hiPSC, Disease modelling, Cardiomyopathy, Quantitative phenotypes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human-induced pluripotent stem cells (hiPSC) can be differentiated to cardiomyocytes at high efficiency and are increasingly used to study cardiac disease in a human context. This review evaluated 38 studies on hypertrophic (HCM) and dilated cardiomyopathy (DCM) of different genetic causes asking to which extent published data allow the definition of an in vitro HCM/DCM hiPSC-CM phenotype. The data are put in context with the prevailing hypotheses on HCM/DCM dysfunction and pathophysiology. Relatively consistent findings in HCM not reported in DCM were larger cell size (156 ± 85%, n = 15), more nuclear localization of nuclear factor of activated T cells (NFAT; 175 ± 65%, n = 3), and higher β-myosin heavy chain gene expression levels (500 ± 547%, n = 8) than respective controls. Conversely, DCM lines showed consistently less force development than controls (47 ± 23%, n = 9), while HCM forces scattered without clear trend. Both HCM and DCM lines often showed sarcomere disorganization, higher NPPA/NPPB expression levels, and arrhythmic beating behaviour. The data have to be taken with the caveat that reporting frequencies of the various parameters (e.g. cell size, NFAT expression) differ widely between HCM and DCM lines, in which data scatter is large and that only 9/38 studies used isogenic controls. Taken together, the current data provide interesting suggestions for disease-specific phenotypes in HCM/DCM hiPSC-CM but indicate that the field is still in its early days. Systematic, quantitative comparisons and robust, high content assays are warranted to advance the field.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: found

          Common genetic variation drives molecular heterogeneity in human iPSCs

          Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study outlines the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of rare, genomic copy number mutations that are repeatedly observed in iPSC reprogramming and present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy.

            Hypertrophic cardiomyopathy is an autosomal-dominant disorder in which 10 genes and numerous mutations have been reported. The aim of the present study was to perform a systematic screening of these genes in a large population, to evaluate the distribution of the disease genes, and to determine the best molecular strategy in clinical practice. The entire coding sequences of 9 genes (MYH7, MYBPC3, TNNI3, TNNT2, MYL2, MYL3, TPM1, ACTC, andTNNC1) were analyzed in 197 unrelated index cases with familial or sporadic hypertrophic cardiomyopathy. Disease-causing mutations were identified in 124 index patients ( approximately 63%), and 97 different mutations, including 60 novel ones, were identified. The cardiac myosin-binding protein C (MYBPC3) and beta-myosin heavy chain (MYH7) genes accounted for 82% of families with identified mutations (42% and 40%, respectively). Distribution of the genes varied according to the prognosis (P=0.036). Moreover, a mutation was found in 15 of 25 index cases with "sporadic" hypertrophic cardiomyopathy (60%). Finally, 6 families had patients with more than one mutation, and phenotype analyses suggested a gene dose effect in these compound-heterozygous, double-heterozygous, or homozygous patients. These results might have implications for genetic diagnosis strategy and, subsequently, for genetic counseling. First, on the basis of this experience, the screening of already known mutations is not helpful. The analysis should start by testing MYBPC3 and MYH7 and then focus on TNNI3, TNNT2, and MYL2. Second, in particularly severe phenotypes, several mutations should be searched. Finally, sporadic cases can be successfully screened.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.

              Characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure, dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy in patients. DCM is the most common diagnosis leading to heart transplantation and places a significant burden on healthcare worldwide. The advent of induced pluripotent stem cells (iPSCs) offers an exceptional opportunity for creating disease-specific cellular models, investigating underlying mechanisms, and optimizing therapy. Here, we generated cardiomyocytes from iPSCs derived from patients in a DCM family carrying a point mutation (R173W) in the gene encoding sarcomeric protein cardiac troponin T. Compared to control healthy individuals in the same family cohort, cardiomyocytes derived from iPSCs from DCM patients exhibited altered regulation of calcium ion (Ca(2+)), decreased contractility, and abnormal distribution of sarcomeric α-actinin. When stimulated with a β-adrenergic agonist, DCM iPSC-derived cardiomyocytes showed characteristics of cellular stress such as reduced beating rates, compromised contraction, and a greater number of cells with abnormal sarcomeric α-actinin distribution. Treatment with β-adrenergic blockers or overexpression of sarcoplasmic reticulum Ca(2+) adenosine triphosphatase (Serca2a) improved the function of iPSC-derived cardiomyocytes from DCM patients. Thus, iPSC-derived cardiomyocytes from DCM patients recapitulate to some extent the morphological and functional phenotypes of DCM and may serve as a useful platform for exploring disease mechanisms and for drug screening.
                Bookmark

                Author and article information

                Contributors
                +49-40-7410-52180 , t.eschenhagen@uke.de
                +49-40-7410-57208 , l.carrier@uke.de
                Journal
                Pflugers Arch
                Pflugers Arch
                Pflugers Archiv
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0031-6768
                1432-2013
                15 October 2018
                15 October 2018
                2019
                : 471
                : 5
                : 755-768
                Affiliations
                [1 ]ISNI 0000 0001 2180 3484, GRID grid.13648.38, Institute of Experimental Pharmacology and Toxicology, , University Medical Center Hamburg-Eppendorf, ; Hamburg, Germany
                [2 ]ISNI 0000 0004 5937 5237, GRID grid.452396.f, Partner Site Hamburg/Kiel/Lübeck, , DZHK (German Centre for Cardiovascular Research), ; Hamburg, Germany
                Author information
                http://orcid.org/0000-0001-8776-5820
                Article
                2214
                10.1007/s00424-018-2214-0
                6475632
                30324321
                2f0fda55-460c-4750-86e5-858f32b4d4b4
                © The Author(s) 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 30 August 2018
                : 19 September 2018
                : 2 October 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100011199, FP7 Ideas: European Research Council;
                Award ID: IndividuHeart
                Award Recipient :
                Funded by: DZHK
                Award ID: Main project
                Award ID: Main project
                Award Recipient :
                Categories
                Invited Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2019

                Anatomy & Physiology
                hipsc,disease modelling,cardiomyopathy,quantitative phenotypes
                Anatomy & Physiology
                hipsc, disease modelling, cardiomyopathy, quantitative phenotypes

                Comments

                Comment on this article