0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of surface morphology and composition of titanium implants on osteogenesis and inflammatory responses: a review

      , , , , , , , ,
      Biomedical Materials
      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Titanium and its alloys have been widely used in bone tissue defect treatment owing to their excellent comprehensive properties. However, because of the biological inertness of the surface, it is difficult to achieve satisfactory osseointegration with the surrounding bone tissue when implanted into the body. Meanwhile, an inflammatory response is inevitable, which leads to implantation failure. Therefore, solving these two problems has become a new research hotspot. In current studies, various surface modification methods were proposed to meet the clinical needs. Yet, these methods have not been classified as a system to guide the follow-up research. These methods are demanded to be summarized, analyzed, and compared. In this manuscript, the effect of physical signal regulation (multi-scale composite structure) and chemical signal regulation (bioactive substance) generated by surface modification in promoting osteogenesis and reducing inflammatory responses was generalized and discussed. Finally, from the perspective of material preparation and biocompatibility experiments, the development trend of surface modification in promoting titanium implant surface osteogenesis and anti-inflammatory research was proposed.

          Related collections

          Most cited references227

          • Record: found
          • Abstract: found
          • Article: not found

          The chemokine system in diverse forms of macrophage activation and polarization.

          Plasticity and functional polarization are hallmarks of the mononuclear phagocyte system. Here we review emerging key properties of different forms of macrophage activation and polarization (M1, M2a, M2b, M2c), which represent extremes of a continuum. In particular, recent evidence suggests that differential modulation of the chemokine system integrates polarized macrophages in pathways of resistance to, or promotion of, microbial pathogens and tumors, or immunoregulation, tissue repair and remodeling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Porosity of 3D biomaterial scaffolds and osteogenesis.

            Porosity and pore size of biomaterial scaffolds play a critical role in bone formation in vitro and in vivo. This review explores the state of knowledge regarding the relationship between porosity and pore size of biomaterials used for bone regeneration. The effect of these morphological features on osteogenesis in vitro and in vivo, as well as relationships to mechanical properties of the scaffolds, are addressed. In vitro, lower porosity stimulates osteogenesis by suppressing cell proliferation and forcing cell aggregation. In contrast, in vivo, higher porosity and pore size result in greater bone ingrowth, a conclusion that is supported by the absence of reports that show enhanced osteogenic outcomes for scaffolds with low void volumes. However, this trend results in diminished mechanical properties, thereby setting an upper functional limit for pore size and porosity. Thus, a balance must be reached depending on the repair, rate of remodeling and rate of degradation of the scaffold material. Based on early studies, the minimum requirement for pore size is considered to be approximately 100 microm due to cell size, migration requirements and transport. However, pore sizes >300 microm are recommended, due to enhanced new bone formation and the formation of capillaries. Because of vascularization, pore size has been shown to affect the progression of osteogenesis. Small pores favored hypoxic conditions and induced osteochondral formation before osteogenesis, while large pores, that are well-vascularized, lead to direct osteogenesis (without preceding cartilage formation). Gradients in pore sizes are recommended for future studies focused on the formation of multiple tissues and tissue interfaces. New fabrication techniques, such as solid-free form fabrication, can potentially be used to generate scaffolds with morphological and mechanical properties more selectively designed to meet the specificity of bone-repair needs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioinspired structural materials.

              Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomedical Materials
                Biomed. Mater.
                IOP Publishing
                1748-6041
                1748-605X
                June 14 2023
                July 01 2023
                June 14 2023
                July 01 2023
                : 18
                : 4
                : 042002
                Article
                10.1088/1748-605X/acd976
                2f7f0de3-de9e-450d-a633-dfb8b668eb00
                © 2023

                https://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article