6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adenovirus-mediated gene transfer of a secreted transforming growth factor-beta type II receptor inhibits luminal loss and constrictive remodeling after coronary angioplasty and enhances adventitial collagen deposition.

      Circulation
      Adenoviridae, genetics, Angioplasty, Balloon, Coronary, adverse effects, Animals, Cells, Cultured, Collagen, metabolism, Constriction, Pathologic, pathology, therapy, Coronary Restenosis, etiology, Coronary Vessels, Culture Media, Conditioned, pharmacology, Genetic Therapy, Genetic Vectors, Inflammation, Muscle, Smooth, Vascular, Protein-Serine-Threonine Kinases, RNA, Messenger, biosynthesis, Receptors, Transforming Growth Factor beta, Swine, Transforming Growth Factor beta, antagonists & inhibitors, Transforming Growth Factor beta1, beta-Galactosidase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular matrix (ECM) remodeling is central to the development of restenosis after coronary angioplasty (PTCA). As a regulator of ECM deposition by vascular cells, substantial evidence implicates transforming growth factor-beta1 (TGF-beta1) in the pathogenesis of restenosis. We investigated the effects of intracoronary expression of a transgenic antagonist of TGF-beta1 on luminal loss after PTCA. Porcine coronary arteries were randomized to receive a recombinant adenovirus expressing a secreted form of TGF-beta type II receptor (Ad5-RIIs), an adenovirus expressing beta-galactosidase (Ad5-lacZ), or vehicle only by intramural injection at the site of PTCA. Computerized morphometry 28 days after angioplasty revealed a greater minimum luminal area in Ad5-RIIs-injected arteries (1.71+/-0.12 mm(2)) than in the Ad5-lacZ (1.33+/-0.13 mm(2)) or vehicle-only (1.08+/-0.17 mm(2); P=0.010 by ANOVA) groups. This was accompanied by greater areas within the internal (P=0.013) and external (P=0.031) elastic laminae in Ad5-RIIs-treated vessels. Adventitial collagen content at the site of injury was increased in the Ad5-RIIs group, in contrast to decreases in the Ad5-lacZ and vehicle-only groups (P=0.004). Adenovirus-mediated antagonism of TGF-beta1 at the site of PTCA reduces luminal loss after PTCA by inhibiting constrictive remodeling. Antagonism of TGF-beta1 stimulates the formation of a dense collagenous adventitia, which prevents constrictive remodeling by acting as an external scaffold. These findings demonstrate the potential of gene therapy-mediated antagonism of TGF-beta1 as prophylactic therapy for restenosis.

          Related collections

          Author and article information

          Comments

          Comment on this article