54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing.

          The licensing of eukaryotic DNA replication origins, which ensures once-per-cell-cycle replication, involves the loading of six related minichromosome maintenance proteins (Mcm2-7) into prereplicative complexes (pre-RCs). Mcm2-7 forms the core of the replicative DNA helicase, which is inactive in the pre-RC. The loading of Mcm2-7 onto DNA requires the origin recognition complex (ORC), Cdc6, and Cdt1, and depends on ATP. We have reconstituted Mcm2-7 loading with purified budding yeast proteins. Using biochemical approaches and electron microscopy, we show that single heptamers of Cdt1*Mcm2-7 are loaded cooperatively and result in association of stable, head-to-head Mcm2-7 double hexamers connected via their N-terminal rings. DNA runs through a central channel in the double hexamer, and, once loaded, Mcm2-7 can slide passively along double-stranded DNA. Our work has significant implications for understanding how eukaryotic DNA replication origins are chosen and licensed, how replisomes assemble during initiation, and how unwinding occurs during DNA replication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication.

            During pre-replication complex (pre-RC) formation, origin recognition complex (ORC), Cdc6, and Cdt1 cooperatively load the 6-subunit mini chromosome maintenance (MCM2-7) complex onto DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that restricts DNA replication to once per cell cycle. During S phase MCM2-7 functions as part of the replicative helicase but within the pre-RC MCM2-7 is inactive. The organization of replicative DNA helicases before and after loading onto DNA has been studied in bacteria and viruses but not eukaryotes and is of major importance for understanding the MCM2-7 loading mechanism and replisome assembly. Lack of an efficient reconstituted pre-RC system has hindered the detailed mechanistic and structural analysis of MCM2-7 loading for a long time. We have reconstituted Saccharomyces cerevisiae pre-RC formation with purified proteins and showed efficient loading of MCM2-7 onto origin DNA in vitro. MCM2-7 loading was found to be dependent on the presence of all pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary structure of MCM2-7 changes during pre-RC formation: MCM2-7 before loading is a single hexamer in solution but is transformed into a double-hexamer during pre-RC formation. Using electron microscopy (EM), we observed that loaded MCM2-7 encircles DNA. The loaded MCM2-7 complex can slide on DNA, and sliding is not directional. Our results provide key insights into mechanisms of pre-RC formation and have important implications for understanding the role of the MCM2-7 in establishment of bidirectional replication forks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes.

              Since most archaea are extremophilic and difficult to cultivate, our current knowledge of their biology is confined largely to comparative genomics and biochemistry. Haloferax volcanii offers great promise as a model organism for archaeal genetics, but until now there has been a lack of a wide variety of selectable markers for this organism. We describe here isolation of H. volcanii leuB and trpA genes encoding 3-isopropylmalate dehydrogenase and tryptophan synthase, respectively, and development of these genes as a positive selection system. DeltaleuB and DeltatrpA mutants were constructed in a variety of genetic backgrounds and were shown to be auxotrophic for leucine and tryptophan, respectively. We constructed both integrative and replicative plasmids carrying the leuB or trpA gene under control of a constitutive promoter. The use of these selectable markers in deletion of the lhr gene of H. volcanii is described.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                26 March 2014
                2014
                : 5
                : 123
                Affiliations
                [1] 1Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
                [2] 2School of Biology, University of St. Andrews North Haugh, St. Andrews, Fife, UK
                Author notes

                Edited by: R. Thane Papke, University of Connecticut, USA

                Reviewed by: Nils-Kåre Birkeland, University of Bergen, Norway; Antonio Ventosa, University of Sevilla, Spain

                *Correspondence: Stuart A. MacNeill, School of Biology, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK e-mail: stuart.macneill@ 123456st-andrews.ac.uk

                This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology.

                †Present address: Tatjana P. Kristensen, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark; Reeja Maria Cherian, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden

                ‡ These authors have contributed equally to this work.

                Article
                10.3389/fmicb.2014.00123
                3972481
                24723920
                2fca7443-af57-41c6-86ab-12cda9be5511
                Copyright © 2014 Kristensen, Maria Cherian, Gray and MacNeill.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 February 2014
                : 10 March 2014
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 50, Pages: 13, Words: 9335
                Categories
                Microbiology
                Original Research Article

                Microbiology & Virology
                haloferax volcanii,archaea,haloarchaea,mcm helicase,dna replication,reverse genetics,zinc binding domain

                Comments

                Comment on this article