21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism

      , , ,
      The Journal of Chemical Physics
      AIP Publishing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d14025538e163">The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model. </p>

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Statistical Mechanics of Dissipative Particle Dynamics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deriving effective mesoscale potentials from atomistic simulations.

            We demonstrate how an iterative method for potential inversion from distribution functions developed for simple liquid systems can be generalized to polymer systems. It uses the differences in the potentials of mean force between the distribution functions generated from a guessed potential and the true distribution functions to improve the effective potential successively. The optimization algorithm is very powerful: convergence is reached for every trial function in few iterations. As an extensive test case we coarse-grained an atomistic all-atom model of polyisoprene (PI) using a 13:1 reduction of the degrees of freedom. This procedure was performed for PI solutions as well as for a PI melt. Comparisons of the obtained force fields are drawn. They prove that it is not possible to use a single force field for different concentration regimes. Copyright 2003 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A multiscale coarse-graining method for biomolecular systems.

              A new approach is presented for obtaining coarse-grained (CG) force fields from fully atomistic molecular dynamics (MD) trajectories. The method is demonstrated by applying it to derive a CG model for the dimyristoylphosphatidylcholine (DMPC) lipid bilayer. The coarse-graining of the interparticle force field is accomplished by an application of a force-matching procedure to the force data obtained from an explicit atomistic MD simulation of the biomolecular system of interest. Hence, the method is termed a "multiscale" CG (MS-CG) approach in which explicit atomistic-level forces are propagated upward in scale to the coarse-grained level. The CG sites in the lipid bilayer application were associated with the centers-of-mass of atomic groups because of the simplicity in the evaluation of the forces acting on them from the atomistic data. The resulting CG lipid bilayer model is shown to accurately reproduce the structural properties of the phospholipid bilayer.
                Bookmark

                Author and article information

                Journal
                The Journal of Chemical Physics
                The Journal of Chemical Physics
                AIP Publishing
                0021-9606
                1089-7690
                December 28 2015
                December 28 2015
                : 143
                : 24
                : 243128
                Article
                10.1063/1.4935490
                4644152
                26723613
                2fe6404e-1e37-4521-a82e-7700e76bc6d8
                © 2015

                https://publishing.aip.org/authors/rights-and-permissions

                History

                Comments

                Comment on this article