Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Radiation resistance of normal human astrocytes: the role of non-homologous end joining DNA repair activity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiotherapy is a common modality for treatment of brain cancers, but it can induce long-term physiological and cognitive deficits. The responses of normal human brain cells to radiation is not well understood. Astrocytes have been shown to have a variety of protective mechanisms against oxidative stress and have been shown to protect neurons. We investigated the response of cultured normal human astrocytes (NHAs) to X-ray irradiation. Following exposure to 10 Gy X-irradiation, NHAs exhibited DNA damage as indicated by the formation of γ-H2AX foci. Western blotting showed that NHAs displayed a robust increase in expression of non-homologous end joining DNA repair enzymes within 15 min post-irradiation and increased expression of homologous recombination DNA repair enzymes ~2 h post-irradiation. The cell cycle checkpoint protein p21/waf1 was upregulated from 6–24 h, and then returned to baseline. Levels of DNA repair enzymes returned to basal ~48 h post-irradiation. NHAs re-entered the cell cycle and proliferation was observed at 6 days. In contrast, normal human mesenchymal stem cells (MSCs) failed to upregulate DNA repair enzymes and instead displayed sustained upregulation of p21/waf1, a cell cycle checkpoint marker for senescence. Ectopic overexpression of Ku70 was sufficient to protect MSCs from sustained upregulation of p21/waf1 induced by 10 Gy X-rays. These findings suggest that increased expression of Ku70 may be a key mechanism for the radioresistance of NHAs, preventing their accelerated senescence from high-dose radiation. These results may have implications for the development of novel targets for radiation countermeasure development.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of DNA double-strand break repair pathway choice.

          DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including large- or small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of DNA repair throughout the cell cycle.

            The repair of DNA lesions that occur endogenously or in response to diverse genotoxic stresses is indispensable for genome integrity. DNA lesions activate checkpoint pathways that regulate specific DNA-repair mechanisms in the different phases of the cell cycle. Checkpoint-arrested cells resume cell-cycle progression once damage has been repaired, whereas cells with unrepairable DNA lesions undergo permanent cell-cycle arrest or apoptosis. Recent studies have provided insights into the mechanisms that contribute to DNA repair in specific cell-cycle phases and have highlighted the mechanisms that ensure cell-cycle progression or arrest in normal and cancerous cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin

              DNA double-strand breaks (DSBs) are extremely dangerous lesions with severe consequences for cell survival and the maintenance of genomic stability. In higher eukaryotic cells, DSBs in chromatin promptly initiate the phosphorylation of the histone H2A variant, H2AX, at Serine 139 to generate γ-H2AX. This phosphorylation event requires the activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs, ATM, and ATR, and serves as a landing pad for the accumulation and retention of the central components of the signaling cascade initiated by DNA damage. Regions in chromatin with γ-H2AX are conveniently detected by immunofluorescence microscopy and serve as beacons of DSBs. This has allowed the development of an assay that has proved particularly useful in the molecular analysis of the processing of DSBs. Here, we first review the role of γ-H2AX in DNA damage response in the context of chromatin and discuss subsequently the use of this modification as a surrogate marker for mechanistic studies of DSB induction and processing. We conclude with a critical analysis of the strengths and weaknesses of the approach and present some interesting applications of the resulting methodology.
                Bookmark

                Author and article information

                Journal
                J Radiat Res
                J. Radiat. Res
                jrr
                Journal of Radiation Research
                Oxford University Press
                0449-3060
                1349-9157
                January 2019
                13 November 2018
                01 January 2020
                : 60
                : 1
                : 37-50
                Affiliations
                [1 ]Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, Jones Bridge Road, Bethesda, MD, USA
                [2 ]Department of Pharmacology and Molecular Therapeutics, The Uniformed Services University of the Health Sciences, Jones Bridge Road, Bethesda, MD, USA
                Author notes
                Corresponding author. Department of Pharmacology and Molecular Therapeutics, Building C Room 2023, 4301 Jones Bridge Roadd, Bethesda, MD 20814–4799, USA. Tel: +1-301-295-3236; Fax: +1-301-295-3220; Email: Regina.day@ 123456usuhs.edu
                Article
                rry084
                10.1093/jrr/rry084
                6373697
                30423138
                303db6bd-2150-4fe6-9412-4e47e3cb32c4
                Published by Oxford University Press on behalf of the Japan Radiation Research Society and Japanese Society for Radiation Oncology 2018.

                This work is written by (a) US Government employee(s) and is in the public domain in the US.

                History
                : 14 June 2018
                : 03 August 2018
                Page count
                Pages: 14
                Funding
                Funded by: National Aeronautics and Space Administration 10.13039/100000104
                Categories
                Regular Paper
                Biology

                Oncology & Radiotherapy
                x-ray irradiation,astrocytes,mesenchymal stem cells,non-homologous end joining,homologous end joining,ku70

                Comments

                Comment on this article