34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The role of exercise and PGC1alpha in inflammation and chronic disease.

          Inadequate physical activity is linked to many chronic diseases. But the mechanisms that tie muscle activity to health are unclear. The transcriptional coactivator PGC1alpha has recently been shown to regulate several exercise-associated aspects of muscle function. We propose that this protein controls muscle plasticity, suppresses a broad inflammatory response and mediates the beneficial effects of exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A systematic review of the evidence for Canada's Physical Activity Guidelines for Adults

            This systematic review examines critically the scientific basis for Canada's Physical Activity Guide for Healthy Active Living for adults. Particular reference is given to the dose-response relationship between physical activity and premature all-cause mortality and seven chronic diseases (cardiovascular disease, stroke, hypertension, colon cancer, breast cancer, type 2 diabetes (diabetes mellitus) and osteoporosis). The strength of the relationship between physical activity and specific health outcomes is evaluated critically. Literature was obtained through searching electronic databases (e.g., MEDLINE, EMBASE), cross-referencing, and through the authors' knowledge of the area. For inclusion in our systematic review articles must have at least 3 levels of physical activity and the concomitant risk for each chronic disease. The quality of included studies was appraised using a modified Downs and Black tool. Through this search we identified a total of 254 articles that met the eligibility criteria related to premature all-cause mortality (N = 70), cardiovascular disease (N = 49), stroke (N = 25), hypertension (N = 12), colon cancer (N = 33), breast cancer (N = 43), type 2 diabetes (N = 20), and osteoporosis (N = 2). Overall, the current literature supports clearly the dose-response relationship between physical activity and the seven chronic conditions identified. Moreover, higher levels of physical activity reduce the risk for premature all-cause mortality. The current Canadian guidelines appear to be appropriate to reduce the risk for the seven chronic conditions identified above and all-cause mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Somatic mitochondrial DNA mutations in mammalian aging.

              Mitochondrial dysfunction is heavily implicated in the multifactorial aging process. Aging humans have increased levels of somatic mtDNA mutations that tend to undergo clonal expansion to cause mosaic respiratory chain deficiency in various tissues, such as heart, brain, skeletal muscle, and gut. Genetic mouse models have shown that somatic mtDNA mutations and cell type-specific respiratory chain dysfunction can cause a variety of phenotypes associated with aging and age-related disease. There is thus strong observational and experimental evidence to implicate somatic mtDNA mutations and mosaic respiratory chain dysfunction in the mammalian aging process. The hypothesis that somatic mtDNA mutations are generated by oxidative damage has not been conclusively proven. Emerging data instead suggest that the inherent error rate of mitochondrial DNA (mtDNA) polymerase gamma (Pol gamma) may be responsible for the majority of somatic mtDNA mutations. The roles for mtDNA damage and replication errors in aging need to be further experimentally addressed.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 08 2011
                March 08 2011
                February 22 2011
                March 08 2011
                : 108
                : 10
                : 4135-4140
                Article
                10.1073/pnas.1019581108
                3053975
                21368114
                3051f90b-4568-47b7-a502-3eade781386f
                © 2011
                History

                Comments

                Comment on this article