6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A rigid spirocyclic diol from fructose-based 5-hydroxymethylfurfural: synthesis, life-cycle assessment, and polymerization for renewable polyesters and poly(urethane-urea)s

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fructose based rigid diol with a spirocyclic structure and low GHG emission profile toward high performance biopolymers.

          Abstract

          There is currently an intensive development of sugar-based building blocks toward the production of renewable high-performance plastics. In this context, we report on the synthesis of a rigid diol with a spirocyclic structure via a one-step acid-catalyzed acetalation of fructose-sourced 5-hydroxymethylfurfural and pentaerythritol. Preliminary life cycle assessment (LCA) indicated that the spiro-diol produced 46% less CO 2 emission than bio-based 1,3-propanediol. Polymerizations of the spiro-diol together with another sugar-based flexible 1,6-hexanediol for the production of polyesters and poly(urethane-urea)s were investigated, and reasonably high molecular weights were achieved when up to 20 and 60 mol% spiro-diol was used for polyesters and poly(urethane-urea)s, respectively. The glass transition temperatures ( T gs) of the polyesters and poly(urethane-urea)s significantly increased upon the incorporation of the rigid spirocyclic structure. On the other hand, it was observed that the spiro-diol was heat-sensitive, which could cause coloration and partial crosslinking when >10% (with respect to dicarboxylate) was used for the polyester synthesis at high temperatures. The results indicated that the polymerization conditions have to be carefully controlled under these conditions. However, when the spiro-diol was used for the synthesis of polyurethanes at lower temperature, the side reactions were insignificant. This suggests that the new spiro-diol can be potentially suitable toward the production of sustainable rigid polyurethane materials like coatings or foams, as well as renewable polyesters after further optimization of the polymerization conditions.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: not found
          • Article: not found

          Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hydroxymethylfurfural, a versatile platform chemical made from renewable resources.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase modifiers promote efficient production of hydroxymethylfurfural from fructose.

              Furan derivatives obtained from renewable biomass resources have the potential to serve as substitutes for the petroleum-based building blocks that are currently used in the production of plastics and fine chemicals. We developed a process for the selective dehydration of fructose to 5-hydroxymethylfurfural (HMF) that operates at high fructose concentrations (10 to 50 weight %), achieves high yields (80% HMF selectivity at 90% fructose conversion), and delivers HMF in a separation-friendly solvent. In a two-phase reactor system, fructose is dehydrated in the aqueous phase with the use of an acid catalyst (hydrochloric acid or an acidic ion-exchange resin) with dimethylsulfoxide and/or poly(1-vinyl-2-pyrrolidinone) added to suppress undesired side reactions. The HMF product is continuously extracted into an organic phase (methylisobutylketone) modified with 2-butanol to enhance partitioning from the reactive aqueous solution.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                December 10 2019
                2019
                : 21
                : 24
                : 6667-6684
                Affiliations
                [1 ]Centre for Analysis and Synthesis
                [2 ]Department of Chemistry
                [3 ]Lund University
                [4 ]SE-22100 Lund
                [5 ]Sweden
                [6 ]Environmental and Energy Systems Studies
                [7 ]Lund
                [8 ]Biotechnology
                [9 ]Perstorp AB
                [10 ]Innovation
                [11 ]284 80 Perstorp
                Article
                10.1039/C9GC03055G
                30600bdd-f27a-458c-8e4b-f8cbec2952ec
                © 2019

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article