7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of induced pluripotent stem cells from renal tubular cells of a patient with Alport syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alport syndrome (AS) is a hereditary disease that leads to kidney failure and is caused by mutations in the COL4A3, COL4A4, and COL4A5 genes that lead to the absence of collagen α3α4α5 (IV) networks in the mature kidney glomerular basement membrane. Approximately 80% of AS is X-linked because of mutations in COL4A5, the gene encoding the alpha 5 chain of type IV collagen. To investigate the pathogenesis of AS at the genetic level, we generated induced pluripotent stem cells (iPSCs) from renal tubular cells of a patient with AS. The successful iPSC generation laid the foundation to master the repair of the COL4A5 gene and to evaluate the differentiation of iPSC into Sertoli cells and the accompanying epigenetic changes at each stage. The generation of iPSCs from AS patients not only confirms that iPSCs could be generated from renal tubular cells, but also provides a novel type of genetic therapy for AS patients. In this study, we generated iPSCs from renal tubular cells via ectopic expression of four transcription factors ( Oct4, Sox2, c-myc, and Klf4). According to the human embryonic stem cell (hESC) charter, iPSC formation was confirmed by comparatively analyzing hESC markers via colony morphology, immunohistochemistry, qRT-PCR, flow cytometry, gene expression profiling of the three germ layers, and karyotyping. Our results demonstrated that iPSCs were similar to hESCs with regard to morphology, proliferation, hESC-specific surface marker expression, and differentiation into the cell types of the three germ layers. The efficient generation of iPSCs from the renal tubular cells of an AS patient would provide a novel model to investigate the mechanisms underlying AS and to develop new treatments for AS.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of induced pluripotent stem cells from urine.

          Forced expression of selected transcription factors can transform somatic cells into embryonic stem cell (ESC)-like cells, termed induced pluripotent stem cells (iPSCs). There is no consensus regarding the preferred tissue from which to harvest donor cells for reprogramming into iPSCs, and some donor cell types may be more prone than others to accumulation of epigenetic imprints and somatic cell mutations. Here, we present a simple, reproducible, noninvasive method for generating human iPSCs from renal tubular cells present in urine. This procedure eliminates many problems associated with other protocols, and the resulting iPSCs display an excellent ability to differentiate. These data suggest that urine may be a preferred source for generating iPSCs. Copyright © 2011 by the American Society of Nephrology
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction.

            Parkinson's disease associated mutations in leucine rich repeat kinase 2 (LRRK2) impair mitochondrial function and increase the vulnerability of induced pluripotent stem cell (iPSC)-derived neural cells from patients to oxidative stress. Since mitochondrial DNA (mtDNA) damage can compromise mitochondrial function, we examined whether LRRK2 mutations can induce damage to the mitochondrial genome. We found greater levels of mtDNA damage in iPSC-derived neural cells from patients carrying homozygous or heterozygous LRRK2 G2019S mutations, or at-risk individuals carrying the heterozygous LRRK2 R1441C mutation, than in cells from unrelated healthy subjects who do not carry LRRK2 mutations. After zinc finger nuclease-mediated repair of the LRRK2 G2019S mutation in iPSCs, mtDNA damage was no longer detected in differentiated neuroprogenitor and neural cells. Our results unambiguously link LRRK2 mutations to mtDNA damage and validate a new cellular phenotype that can be used for examining pathogenic mechanisms and screening therapeutic strategies. © 2013.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Generating a Non-Integrating Human Induced Pluripotent Stem Cell Bank from Urine-Derived Cells

              Induced pluripotent stem cell (iPS cell) holds great potential for applications in regenerative medicine, drug discovery, and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs) under feeder-free, virus-free, serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency, offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study, we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research, facilitating future applications of human iPS cells.
                Bookmark

                Author and article information

                Journal
                Int J Nephrol Renovasc Dis
                Int J Nephrol Renovasc Dis
                International Journal of Nephrology and Renovascular Disease
                International Journal of Nephrology and Renovascular Disease
                Dove Medical Press
                1178-7058
                2015
                21 August 2015
                : 8
                : 101-109
                Affiliations
                [1 ]The Clinical Medical Research Center, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
                [2 ]Department of Hemodialysis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
                [3 ]Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, People’s Republic of China
                Author notes
                Correspondence: Yong Dai, The Clinical Medical Research Center, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, People’s Republic of China, Email daiyong2222@ 123456gmail.com
                [*]

                These authors contributed equally to this work

                Article
                ijnrd-8-101
                10.2147/IJNRD.S85733
                4551301
                26345127
                308883d9-15ce-4c54-b551-055c1bb7d925
                © 2015 Chen et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Nephrology
                alport syndrome,induced pluripotent stem cells,renal tubular cells
                Nephrology
                alport syndrome, induced pluripotent stem cells, renal tubular cells

                Comments

                Comment on this article