7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      "Hearing Loss" in QCM Measurement of Protein Adsorption to Protein Resistant Polymer Brush Layers.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurate quantification of nonspecific protein adsorption on biomaterial surfaces is essential for evaluation of their antifouling properties. The quartz crystal microbalance (QCM) is an acoustic sensor widely used for the measurement of protein adsorption. However, although the QCM is highly sensitive, it does have performance limitations when working with surfaces modified with thick viscous layers. In the case of polymer brush surfaces, factors such as the thickness and viscosity of the brush may bring such limitations. In the present work, three types of antifouling molecules were used to explore the applicability of QCM for the evaluation of the protein resistance of hydrophilic polymer brush surfaces. Adsorption was also measured by surface plasmon resonance (SPR) as a reference. It was shown that the detection of adsorbed protein requires that protein be located within a critical distance from the QCM chip surface, determined by the viscosity of polymer brush. For larger proteins like fibrinogen, adsorption is expected to occur mainly "on top" of the polymer brush, and brush thickness determines whether protein is located in the "detectable zone". For smaller proteins like lysozyme, adsorption is expected to occur mainly at the chip surface and within the polymer brush layer and to be detectable by QCM. However, the quantity of adsorbed lysozyme may be underestimated when secondary adsorption also occurred. It is concluded that QCM data suggesting very low protein adsorption on polymer brush surfaces should take account of these considerations and should be treated generally with caution.

          Related collections

          Author and article information

          Journal
          Anal Chem
          Analytical chemistry
          American Chemical Society (ACS)
          1520-6882
          0003-2700
          April 04 2017
          : 89
          : 7
          Affiliations
          [1 ] State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, People's Republic of China.
          [2 ] School of Biomedical Engineering and Department of Chemical Engineering, McMaster University , Hamilton, Ontario, Canada.
          Article
          10.1021/acs.analchem.7b00198
          28276243
          308dfe08-8944-4789-907a-5730d4d81d9e
          History

          Comments

          Comment on this article