24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monitoring targeted drug delivery: a key cornerstone of precision medicine

      abstract
      1 , 2 , , 1
      Journal of Translational Medicine
      BioMed Central
      2012 Sino-American Symposium on Clinical and Translational Medicine (SAS-CTM)
      27-29 June 2012

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The application of Personalized Medicine strategies of matching specific disease genotypes and phenotypes with specific pharmaceutical drug treatment has shown tremendous efficacy in several important diseases. The most successful example is the targeting mutations of the epithelial growth factor receptor by small molecule antagonists of the tyrosine kinase in non small cell lung cancer. The expansion of this treatment paradigm into other diseases has led to new thinking considering the diagnosis and treatment of disease, including “Precision Medicine”, which seeks to provide a molecular taxonomy of disease that can be used for guiding targeted therapy in individual patients. Today we have only a cursory understanding of the patterns of actual uptake of drugs or their active metabolites at such targeted sites in the body. In the past such studies required extrinsic labeling of the parent drug (ie radioactivity in PET) that potentially changed the chemical and biological properties of the drug. New technologies such as MALDI-MSI mass spectrometry have revolutionized the label-less tracking of drugs within targeted disease tissue sites [1]. A spectral image of drug distribution in biopsy tissue compartments is created by monitoring the signal intensity of signature ion mass fingerprints unique to each compound and its metabolites at contiguous sampling windows separated by < thirty microns. In a Proof of Principle study, we have applied MALDI-MSI to track the uptake and distribution of an inhaled muscarinic receptor antagonist [2], ipratropium in the bronchial airways of COPD patients shortly after administration. Direct measurement of the unlabeled drug in brochial biopsies showed that the ipratropium (parent drug ion mass, m/z 332.332, daughter ion masses m/z 166.2, and m/z 290.2) was transported and localized to areas of airway smooth muscle that expressed the targeted acetylcholine receptor M3, as shown by immunohistochemistry performed following mass spectrometry analysis. This result is the first reported co-localization of the unlabeled drug and its targeted receptor in man. In addition to the drug position and intensity signatures it is possible to simultaneously map the patterns of thousands of ion masses representing peptides, proteins, phospholipids, and metabolites that characterize healthy and diseased states. Further, the effect of drug on the relative abundances and histological positions of these ion signatures may also provide important indices of response to therapy. Together, these catalogs will likely become an important part of the molecular taxonomy of disease being developed with Precision Medicine frameworks using genomic, genetic and proteomic approaches defining the micro-environment of disease.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: not found

          Direct demonstration of tissue uptake of an inhaled drug: proof-of-principle study using matrix-assisted laser desorption ionization mass spectrometry imaging.

          Drug therapy is often directed to specific organ and tissue compartments where the mode of action of the compound affects specifically targeted biological processes. However, the direct measurement of drug uptake in terms of a time kinetic and concentrations attained at the local sites has not been readily available as a clinical index for most drugs. A proof-of-principle study was conducted to test the utility of applying matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) to demonstrate the qualitative distribution pattern of a locally administered drug within tissue sites of targeted action. Here we have measured the occurrence of an inhaled bronchodilator, the muscarinic receptor antagonist ipratropium, within human bronchial biopsies obtained by fiber optic bronchoscopy shortly after dosing exposure. Cryo-preserved biopsy samples from five subjects being evaluated for airway obstruction or potential tumor development were prepared as thin frozen sections. Samples coated with a MALDI matrix were analyzed by a MALDI LTQ Orbitrap XL mass spectrometer at large (100 μm) and small (30 μm) raster sizes. Our results demonstrate that ipratropium is rapidly absorbed into the airway wall. Ipratropium parent ion (m/z 332.332) and daughter ions (m/z 166.2 and 290.2) were coincidently partitioned within submucosal spaces containing targeted airway smooth muscle in four out of five subjects. The signal intensity of ipratropium fragment ions provided estimates that local drug concentrations between 3 and 80 nM were achieved within the airway wall. To our knowledge, this is the first reported study in applying MALDI-MSI to demonstrate the localization of a drug administered at therapeutic levels. The study highlights the potential benefit of MALDI-MSI to provide important measurements of drug efficacy in clinical settings.
            Bookmark

            Author and article information

            Contributors
            Conference
            J Transl Med
            J Transl Med
            Journal of Translational Medicine
            BioMed Central
            1479-5876
            2012
            17 October 2012
            : 10
            : Suppl 2
            : A48
            Affiliations
            [1 ]Div. Clinical Protein Science & Imaging, Biomedical Center, Dept. of Measurement Technology and Industrial Electrical Engineering, Lund University, BMC C13, SE-221 84 Lund, Sweden
            [2 ]Dept. of Surgery, Tokyo Medical University, Tokyo, Japan
            Article
            1479-5876-10-S2-A48
            10.1186/1479-5876-10-S2-A48
            3479850
            30ecc103-310e-4180-93fc-dd00118271b1
            Copyright ©2012 Marko-Varga and Fehniger; licensee BioMed Central Ltd.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            2012 Sino-American Symposium on Clinical and Translational Medicine (SAS-CTM)
            Shanghai, China
            27-29 June 2012
            History
            Categories
            Meeting Abstract

            Medicine
            Medicine

            Comments

            Comment on this article