Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NS1: a promising novel target antigen with strong immunogenicity and protective efficacy for avian flavivirus vaccine development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tembusu virus ( TMUV), an avian pathogenic flavivirus, has emerged as a significant threat to the duck industry in Southeast Asia, causing substantial economic losses. Due to the antibody-dependent enhancement ( ADE) effect of TMUV subneutralizing antibodies, there is a pressing need to further develop new TMUV vaccine target antigens that ensure both safety and efficacy. Here, the TMUV non-structural protein 1 ( NS1) as a target for development of effective anti-TMUV vaccines was unveiled. The amino acid sequences of TMUV NS1 exhibit a high degree of conservation across different strains (92.63–100%). To investigate the potential of TMUV NS1 as a vaccine target, the TMUV NS1-based plasmids were constructed and identified the C-terminal 30 amino acids residues of TMUV E ( E C30 ) as an effective signal peptide for promoting NS1 expression and secretion. Subsequently, the plasmid pVAX1-E C30-NS1 was employed to immunize ducks, resulting in specific anti-NS1 IgG responses being stimulated, while without inducing anti-TMUV neutralizing antibodies. Furthermore, the cellular immune responses triggered by the TMUV NS1 were evaluated, observing a notable increase in lymphocyte proliferation at 4 wk and 6 wk postinjection with the pVAX1-E C30-NS1. Additionally, there was a significant up-regulation of NS1-specific Il-4 and Ifnγ levels at these time points. Following this, ducks from different groups were challenged with TMUV, and remarkably, those immunized with the NS1 vaccine displayed significantly lower viral copies both at 3 d postinfection ( dpi) and 7 dpi ( P < 0.05) compared to ducks immunized with the control vector. Notably, the NS1 demonstrated remarkable protection against TMUV challenge without causing severe gross lesions. Collectively, these findings highlighted the impressive immunogenicity and protectivity of the TMUV NS1. Consequently, NS1 holds great promise as a novel antigen target for the development of efficient and safe TMUV vaccines.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The continued threat of emerging flaviviruses

          Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, and congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last seventy years, including epidemics of Dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses now are globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure, and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker.

            The flavivirus nonstructural glycoprotein NS1 is an enigmatic protein whose structure and mechanistic function have remained somewhat elusive ever since it was first reported in 1970 as a viral antigen circulating in the sera of dengue-infected patients. All flavivirus NS1 genes share a high degree of homology, encoding a 352-amino-acid polypeptide that has a molecular weight of 46-55 kDa, depending on its glycosylation status. NS1 exists in multiple oligomeric forms and is found in different cellular locations: a cell membrane-bound form in association with virus-induced intracellular vesicular compartments, on the cell surface and as a soluble secreted hexameric lipoparticle. Intracellular NS1 co-localizes with dsRNA and other components of the viral replication complex and plays an essential cofactor role in replication. Although this makes NS1 an ideal target for inhibitor design, the precise nature of its cofactor function has yet to be elucidated. A plethora of potential interacting partners have been identified, particularly for the secreted form of NS1, with many being implicated in immune evasion strategies. Secreted and cell-surface-associated NS1 are highly immunogenic and both the proteins themselves and the antibodies they elicit have been implicated in the seemingly contradictory roles of protection and pathogenesis in the infected host. Finally, NS1 is also an important biomarker for early diagnosis of disease. In this article, we provide an overview of these somewhat disparate areas of research, drawing together the wealth of data generated over more than 40 years of study of this fascinating protein. Copyright © 2013 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism

              SUMMARY Flaviviruses cause systemic or neurotropic-encephalitic pathology in humans. The flavivirus nonstructural protein 1 (NS1) is a secreted glycoprotein involved in viral replication, immune evasion, and vascular leakage during dengue virus infection. However, the contribution of secreted NS1 from related flaviviruses to viral pathogenesis remains unknown. Here, we demonstrate that NS1 from dengue, Zika, West Nile, Japanese encephalitis, and yellow fever viruses selectively binds to and alters permeability of human endothelial cells from lung, dermis, umbilical vein, brain, and liver in vitro and causes tissue-specific vascular leakage in mice, reflecting the pathophysiology of each flavivirus. Mechanistically, each flavivirus NS1 leads to differential disruption of endothelial glycocalyx components, resulting in endothelial hyperpermeability. Our findings reveal the capacity of a secreted viral protein to modulate endothelial barrier function in a tissue-specific manner both in vitro and in vivo, potentially influencing virus dissemination and pathogenesis and providing targets for antiviral therapies and vaccine development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                17 January 2024
                April 2024
                17 January 2024
                : 103
                : 4
                : 103469
                Affiliations
                [* ]Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
                []Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
                []Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
                Author notes
                [2 ]Corresponding author: chenganchun@ 123456vip.163.com
                [1]

                These authors contributed equally to this work.

                Article
                S0032-5791(24)00048-8 103469
                10.1016/j.psj.2024.103469
                10864804
                38335667
                3104aca9-3160-48c5-b439-47cc8ecf46f0
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 9 October 2023
                : 28 December 2023
                Categories
                IMMUNOLOGY, HEALTH AND DISEASE

                tmuv ns1,vaccine,neutralizing antibody,cellular immune response,protectivity

                Comments

                Comment on this article