3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanical adaptability of artificial muscles from nanoscale molecular action

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The motion of artificial molecular machines has been amplified into the shape transformation of polymer materials that have been compared to muscles, where mechanically active molecules work together to produce a contraction. In spite of this progress, harnessing cooperative molecular motion remains a challenge in this field. Here, we show how the light-induced action of artificial molecular switches modifies not only the shape but also, simultaneously, the stiffness of soft materials. The heterogeneous design of these materials features inclusions of free liquid crystal in a liquid crystal polymer network. When the magnitude of the intrinsic interfacial tension is modified by the action of the switches, photo-stiffening is observed, in analogy with the mechanical response of activated muscle fibers, and in contrast to melting mechanisms reported so far. Mechanoadaptive materials that are capable of active tuning of rigidity will likely contribute to a bottom-up approach towards human-friendly and soft robotics.

          Abstract

          The cooperative motion of artificial molecular machines has led to materials that respond to light with changing shape but also with softening. Here the authors describe a phase-heterogeneous liquid crystal material in which the action of molecular switches leads to morphing and stiffening, by enhancement of interfacial tension.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers.

          Liquid crystals are the basis of a pervasive technology of the modern era. Yet, as the display market becomes commoditized, researchers in industry, government and academia are increasingly examining liquid crystalline materials in a variety of polymeric forms and discovering their fascinating and useful properties. In this Review, we detail the historical development of liquid crystalline polymeric materials, with emphasis on the thermally and photogenerated macroscale mechanical responses--such as bending, twisting and buckling--and on local-feature development (primarily related to topographical control). Within this framework, we elucidate the benefits of liquid crystallinity and contrast them with other stimuli-induced mechanical responses reported for other materials. We end with an outlook of existing challenges and near-term application opportunities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Light-driven monodirectional molecular rotor.

            Attempts to fabricate mechanical devices on the molecular level have yielded analogues of rotors, gears, switches, shuttles, turnstiles and ratchets. Molecular motors, however, have not yet been made, even though they are common in biological systems. Rotary motion as such has been induced in interlocked systems and directly visualized for single molecules, but the controlled conversion of energy into unidirectional rotary motion has remained difficult to achieve. Here we report repetitive, monodirectional rotation around a central carbon-carbon double bond in a chiral, helical alkene, with each 360 degrees rotation involving four discrete isomerization steps activated by ultraviolet light or a change in the temperature of the system. We find that axial chirality and the presence of two chiral centres are essential for the observed monodirectional behaviour of the molecular motor. Two light-induced cis-trans isomerizations are each associated with a 180 degrees rotation around the carbon-carbon double bond and are each followed by thermally controlled helicity inversions, which effectively block reverse rotation and thus ensure that the four individual steps add up to one full rotation in one direction only. As the energy barriers of the helicity inversion steps can be adjusted by structural modifications, chiral alkenes based on our system may find use as basic components for 'molecular machinery' driven by light.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making molecular machines work.

              In this review we chart recent advances in what is at once an old and very new field of endeavour--the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a discussion of design principles used to control linear and rotary motion in such molecular systems, this review will address the advances towards the construction of synthetic machines that can perform useful functions. Approaches taken by several research groups to construct wholly synthetic molecular machines and devices are compared. This will be illustrated with molecular rotors, elevators, valves, transporters, muscles and other motor functions used to develop smart materials. The demonstration of molecular machinery is highlighted through recent examples of systems capable of effecting macroscopic movement through concerted molecular motion. Several approaches to illustrate how molecular motor systems have been used to accomplish work are discussed. We will conclude with prospects for future developments in this exciting field of nanotechnology.
                Bookmark

                Author and article information

                Contributors
                n.h.katsonis@utwente.nl
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                23 October 2019
                23 October 2019
                2019
                : 10
                : 4819
                Affiliations
                ISNI 0000 0004 0399 8953, GRID grid.6214.1, Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, , University of Twente, ; PO Box 207, Enschede, 7500 AE The Netherlands
                Author information
                http://orcid.org/0000-0003-3075-1465
                http://orcid.org/0000-0001-9605-3067
                http://orcid.org/0000-0003-1054-6544
                Article
                12786
                10.1038/s41467-019-12786-2
                6811622
                31645565
                319d2a00-196b-4b69-8788-2085130619af
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 May 2019
                : 30 September 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100010663, EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council);
                Award ID: 772564
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100001663, Volkswagen Foundation (VolkswagenStiftung);
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                soft materials,molecular machines and motors
                Uncategorized
                soft materials, molecular machines and motors

                Comments

                Comment on this article