59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transplantation of Bone Marrow–Derived Mesenchymal Stem Cells Improves Diabetic Polyneuropathy in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE—Mesenchymal stem cells (MSCs) have been reported to secrete various cytokines that exhibit angiogenic and neurosupportive effects. This study was conducted to investigate the effects of MSC transplantation on diabetic polyneuropathy (DPN) in rats.

          RESEARCH DESIGN AND METHODS—MSCs were isolated from bone marrow of adult rats and transplanted into hind limb skeletal muscles of rats with an 8-week duration of streptozotocin (STZ)-induced diabetes or age-matched normal rats by unilateral intramuscular injection. Four weeks after transplantation, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) productions in transplanted sites, current perception threshold, nerve conduction velocity (NCV), sciatic nerve blood flow (SNBF), capillary number–to–muscle fiber ratio in soleus muscles, and sural nerve morphometry were evaluated.

          RESULTS—VEGF and bFGF mRNA expression were significantly increased in MSC-injected thigh muscles of STZ-induced diabetic rats. Furthermore, colocalization of MSCs with VEGF and bFGF in the transplanted sites was confirmed. STZ-induced diabetic rats showed hypoalgesia, delayed NCV, decreased SNBF, and decreased capillary number–to–muscle fiber ratio in soleus muscles, which were all ameliorated by MSC transplantation. Sural nerve morphometry showed decreased axonal circularity in STZ-induced diabetic rats, which was normalized by MSC transplantation.

          CONCLUSIONS—These results suggest that MSC transplantation could have therapeutic effects on DPN through paracrine actions of growth factors secreted by MSCs.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Diabetes

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A relativistic jetted outburst from a massive black hole fed by a tidally disrupted star

            While gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, the vast majority of MBHs are considered dormant. Occasionally, a star passing too near a MBH is torn apart by gravitational forces, leading to a bright panchromatic tidal disruption flare (TDF). While the high-energy transient Swift J164449.3+573451 ("Sw 1644+57") initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that the observations (Levan et al. 2011) suggest a sudden accretion event onto a central MBH of mass ~10^6-10^7 solar masses. We find evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 with a smaller-scale blazar. The phenomenologically novel Sw 1644+57 thus connects the study of TDFs and active galaxies, opening a new vista on disk-jet interactions in BHs and magnetic field generation and transport in accretion systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms.

              We recently demonstrated that marrow stromal cells (MSCs) augment collateral remodeling through release of several cytokines such as VEGF and bFGF rather than via cell incorporation into new or remodeling vessels. The present study was designed to characterize the full spectrum of cytokine genes expressed by MSCs and to further examine the role of paracrine mechanisms that underpin their therapeutic potential. Normal human MSCs were cultured under normoxic or hypoxic conditions for 72 hours. The gene expression profile of the cells was determined using Affymetrix GeneChips representing 12 000 genes. A wide array of arteriogenic cytokine genes were expressed at baseline, and several were induced >1.5-fold by hypoxic stress. The gene array data were confirmed using ELISA assays and immunoblotting of the MSC conditioned media (MSC(CM)). MSC(CM) promoted in vitro proliferation and migration of endothelial cells in a dose-dependent manner; anti-VEGF and anti-FGF antibodies only partially attenuated these effects. Similarly, MSC(CM) promoted smooth muscle cell proliferation and migration in a dose-dependent manner. Using a murine hindlimb ischemia model, murine MSC(CM) enhanced collateral flow recovery and remodeling, improved limb function, reduced the incidence of autoamputation, and attenuated muscle atrophy compared with control media. These data indicate that paracrine signaling is an important mediator of bone marrow cell therapy in tissue ischemia, and that cell incorporation into vessels is not a prerequisite for their effects.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                November 2008
                : 57
                : 11
                : 3099-3107
                Affiliations
                [1 ]Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
                [2 ]Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
                [3 ]Department of Metabolic Medicine, Nagoya University School of Medicine, Nagoya, Japan
                Author notes

                Corresponding author: Jiro Nakamura, jiro@ 123456med.nagoya-u.ac.jp

                Article
                57113099
                10.2337/db08-0031
                2570407
                18728233
                31b760c6-04c4-4741-b768-085b11d097ad
                Copyright © 2008, American Diabetes Association

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 9 January 2008
                : 14 August 2008
                Categories
                Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article