Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Mechanism of Cd-Induced Inhibition of Na-Glucose Cotransporter in Rabbit Proximal Tubule Cells: Roles of Luminal pH and Membrane-Bound Carbonic Anhydrase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: We have previously reported that a complex of cadmium-metallothionein (Cd-MT) directly affects the apical Na-glucose cotransporter on the luminal side in proximal tubules, suggesting that Cd-MT is more toxic than CdCl<sub>2</sub> in causing tubulopathy. To find the potential mechanisms, we evaluated the effect of luminal pH alteration and carbonic anhydrase (CA) inhibition on Cd-MT-induced reduction of glucose-dependent transmural voltage in rabbit S2 segments perfused in vitro. Methods: Before and after the addition of Cd-MT (1 µg Cd/ml) to the lumen, the deflections of transmural voltage upon the elimination of glucose from the perfusate (ΔVt<sub>glu</sub>) were measured as a parameter of activity of the Na-glucose cotransporter. Results: During perfusion with a control solution of pH 7.4, the ΔVt<sub>glu</sub> significantly decreased after addition of Cd-MT for 10 min. A reduction in pH to 6.8 significantly shortened the time needed to reduce the ΔVt<sub>glu</sub> to <5 min, whereas an increase of pH to 7.7 significantly prolonged the time to >20 min. Furthermore, simultaneous addition of acetazolamide with control perfusate prevented the reduction. P-Fluorobenzyl-aminobenzolamide (pFB-ABZ), a membrane-impermeable CA inhibitor, added to the lumen also completely prevented the reduction in ΔVt<sub>glu</sub>. In rabbits with chronic Cd exposure, acetazolamide prevented the glucosuria. Conclusion: Cd-MT-induced inhibition of Na-glucose cotransporter activity in the S2 segment strongly depends on luminal pH, and that an increase in pH by inhibition of luminal membrane-bound CA is useful to prevent renal Cd toxicity.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: not found

          Licorice inhibits corticosteroid 11 beta-dehydrogenase of rat kidney and liver: in vivo and in vitro studies.

          In humans, glycyrrhetinic acid (GE), the active pharmacological ingredient of licorice, produces symptoms resembling those caused by excess mineralocorticoid secretion. We are proposing that 11 beta-dehydrogenase inhibition, and not intrinsic mineralocorticoid activity, is the primary mechanism of licorice induced pseudoaldosteronism. Glycyrrhizic acid (glycyrrhetinic acid glucuronide), when given orally to rats, partially inhibited renal 11 beta-dehydrogenase. In rats treated with dexamethasone before glycyrrhizic acid administration there was similar enzyme inhibition, suggesting that antimineralocorticoid effects of dexamethasone in licorice excess states are not mediated through a direct effect on 11 beta-dehydrogenase activity. Dispersed renal proximal tubular preparations, kidney homogenates, and microsomes readily converted corticosterone to 11-dehydrocorticosterone. GE and its synthetic analog carbenoxolone inhibited the conversion in these systems in a dose-dependent manner. Corticosteroid 11-oxoreductase, which was present in kidney homogenates at a level 10-20% that of 11 beta-dehydrogenase was not inhibited by any of the agents. With homogenate and microsomes, the Ki of GE was about 10(-9)-10(-8) M; with intact tubules, the Ki of GE was about 10(-5)-10(-6) M. It is suggested that a permeability barrier slows the entry of GE into the tubule cells. We conclude that the effects of licorice on corticosteroid metabolism in the kidney are based on its inhibition of 11 beta-dehydrogenase. Our data, supplemented by published evidence, is inconsistent with the conclusion that interaction with mineralocorticoid receptors accounts for the pharmacological effects of GE.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells.

            Chronic cadmium (Cd2+) exposure results in renal proximal tubular cell damage. Delivery of Cd2+ to the kidney occurs mainly as complexes with metallothionein-1 (molecular mass approximately 7 kDa), freely filtered at the glomerulus. For Cd2+ to gain access to the proximal tubule cells, these complexes are thought to be internalized via receptors for small protein ligands, such as megalin and cubilin, followed by release of Cd2+ from metallothionein-1 in endosomal/lysosomal compartments. To investigate the role of megalin in renal cadmium-metallothionein-1 reabsorption, megalin expression and dependence of cadmium-metallothionein-1 internalization and cytotoxicity on megalin were studied in a renal proximal tubular cell model (WKPT-0293 Cl.2 cells). Expression of megalin was detected by reverse transcriptase-polymerase chain reaction and visualized by immunofluorescence both at the cell surface (live staining) and intracellularly (permeabilized cells). Internalization of Alexa Fluor 488-coupled metallothionein-1 was concentration-dependent, saturating at approximately 15 microM. At 14.3 microM, metallothionein-1 uptake could be significantly attenuated by 30.9 +/- 6.6% (n = 4) by 1 muM of the receptor-associated protein (RAP) used as a competitive inhibitor of cadmium-metallothionein-1 binding to megalin and cubilin. Consistently, cytotoxicity of a 24-h treatment with 7.14 muM cadmium-metallothionein-1 was significantly reduced by 41.0 +/- 7.6%, 61.6 +/- 3.4%, and 26.2 +/- 1.8% (n = 4-5 each) by the presence of 1 microM RAP, 400 microg/ml anti-megalin antibody, or 5 microM of the cubilin-specific ligand, apo-transferrin, respectively. Cubilin expression in proximal tubule cells was also confirmed at the mRNA and protein level. The data indicate that renal proximal tubular cadmium-metallothionein-1 uptake and cell death are mediated at least in part by megalin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Megalin mediates renal uptake of heavy metal metallothionein complexes.

              Although several heavy metal toxins are delivered to the kidney on the carrier protein metallothionein (MT), uncertainty as to how MT enters proximal tubular cells limits treatment strategies. Prompted by reports that MT-I interferes with renal uptake of the megalin ligand beta(2)-microglobulin in conscious rats, we tested the hypothesis that megalin binds MT and mediates its uptake. Three lines of evidence suggest that binding of MT to megalin is critical in renal proximal tubular uptake of MT-bound heavy metals. First, MT binds megalin, but not cubilin, in direct surface plasmon resonance studies. Binding of MT occurs at a single site with a K(d) approximately 10(-4) and, as with other megalin ligands, depends on divalent cations. Second, antisera and various known megalin ligands inhibit the uptake of fluorescently labeled MT in model cell systems. Anti-megalin antisera, but not control sera, displace >90% bound MT from rat renal brush-border membranes. Megalin ligands including beta(2)-microglobulin and also recombinant MT fragments compete for uptake by megalin-expressing rat yolk sac BN-16 cells. Third, megalin and fluorescently labeled MT colocalize in BN-16 cells, as shown by fluorescent microscopic techniques. Follow-up surface plasmon resonance and flow cytometry studies using overlapping MT peptides and recombinant MT fragments identify the hinge SCKKSCC region of MT as a critical site for megalin binding. These findings suggest that disruption of the SCKKSCC motif can inhibit proximal tubular MT uptake and thereby eliminate much of the renal accumulation and toxicity of heavy metals such as cadmium, gold, copper, and cisplatinum.
                Bookmark

                Author and article information

                Journal
                NEP
                Nephron Physiol
                10.1159/issn.1660-2137
                Nephron Physiology
                S. Karger AG
                1660-2137
                2008
                November 2008
                13 October 2008
                : 110
                : 2
                : p11-p20
                Affiliations
                aDepartment of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, and bDepartment of Nephrology, University of Tsukuba, Tsukuba, Japan; cMedical Service, Veterans Affairs, Puget Sound Health Care System, University of Washington, Seattle, Wash., USA
                Article
                161986 Nephron Physiol 2008;110:p11
                10.1159/000161986
                18849623
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 9, References: 25, Pages: 1
                Categories
                Original Paper

                Comments

                Comment on this article