6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brucella ceti sequence type 23, 26, and 27 infections in North American cetaceans

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brucella ceti infection is associated with a variety of disease outcomes in cetaceans globally. Multiple genotypes of B. ceti have been identified. This retrospective aimed to determine if specific lesions were associated with different B. ceti DNA sequence types (STs). Characterization of ST was performed on 163 samples from 88 free-ranging cetaceans, including common bottlenose dolphin Tursiops truncatus ( T.t.; n = 73), common short-beaked dolphin Delphinus delphis ( D.d.; n = 7), striped dolphin Stenella coeruleoalba (n = 3), Pacific white-sided dolphin Lagenorhynchus obliquidens (n = 2), sperm whale Physeter macrocephalus (n = 2), and harbour porpoise Phocoena phocoena (n = 1), that stranded along the coast of the US mainland and Hawaii. ST was determined using a previously described insertion sequence 711 quantitative PCR. Concordance with 9-locus multi-locus sequence typing was assessed in a subset of samples (n = 18). ST 26 was most commonly identified in adult dolphins along the US east coast with non-suppurative meningoencephalitis (p = 0.009). Animals infected with ST 27 were predominately perinates that were aborted or died shortly after birth with evidence of in utero pneumonia (p = 0.035). Reproductive tract inflammation and meningoencephalitis were also observed in adult T.t. and D.d. with ST 27, though low sample size limited interpretation. ST 23 infections can cause disease in cetacean families other than porpoises (Phocoenidae), including neurobrucellosis in D.d. In total, 11 animals were potentially infected with multiple STs. These data indicate differences in pathogenesis among B. ceti STs in free-ranging cetaceans, and infection with multiple STs is possible.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions.

          This review of Brucella-host interactions and immunobiology discusses recent discoveries as the basis for pathogenesis-informed rationales to prevent or treat brucellosis. Brucella spp., as animal pathogens, cause human brucellosis, a zoonosis that results in worldwide economic losses, human morbidity, and poverty. Although Brucella spp. infect humans as an incidental host, 500,000 new human infections occur annually, and no patient-friendly treatments or approved human vaccines are reported. Brucellae display strong tissue tropism for lymphoreticular and reproductive systems with an intracellular lifestyle that limits exposure to innate and adaptive immune responses, sequesters the organism from the effects of antibiotics, and drives clinical disease manifestations and pathology. Stealthy brucellae exploit strategies to establish infection, including i) evasion of intracellular destruction by restricting fusion of type IV secretion system-dependent Brucella-containing vacuoles with lysosomal compartments, ii) inhibition of apoptosis of infected mononuclear cells, and iii) prevention of dendritic cell maturation, antigen presentation, and activation of naive T cells, pathogenesis lessons that may be informative for other intracellular pathogens. Data sets of next-generation sequences of Brucella and host time-series global expression fused with proteomics and metabolomics data from in vitro and in vivo experiments now inform interactive cellular pathways and gene regulatory networks enabling full-scale systems biology analysis. The newly identified effector proteins of Brucella may represent targets for improved, safer brucellosis vaccines and therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts.

            Small Gram-negative cocco-bacilli resembling Brucella strains have been reported from marine mammals since the mid-1990s. Their placement in the genus Brucella has been supported by the following characteristics: they are aerobic, non-motile and catalase-positive, do not produce acid from carbohydrates and have a DNA-DNA relatedness value of >77% with the six established members of the genus. Twenty-eight European isolates of the genus Brucella from marine mammals were distinguished from the six recognized species by their pattern of utilization of eleven substrates in oxidative metabolism tests and phage lysis. The 28 strains could be further separated into two groups with cetaceans and seals as their respective preferred hosts on the basis of molecular methods and on differences in the metabolism of l-arabinose, d-galactose and d-xylose. The names Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. are proposed for the isolates from cetaceans and seals, respectively. The type strain of Brucella ceti sp. nov. is NCTC 12891T (=BCCN 94-74T) and the type strain of Brucella pinnipedialis sp. nov. is NCTC 12890T (=BCCN 94-73T).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR.

              Several PCR assays which identify the genus Brucella but do not discriminate among species have been reported. We describe a PCR assay that comprises five oligonucleotide primers which can identify selected biovars of four species of Brucella. Individual biovars within a species are not differentiated. The assay can identify three biovars (1, 2, and 4) of B. abortus, all three biovars of B. melitensis, biovar 1 of B. suis, and all B. ovis biovars. These biovars include all of the Brucella species typically isolated from cattle in the United States, a goal of the present research. The assay exploits the polymorphism arising from species-specific localization of the genetic element IS711 in the Brucella chromosome. Identity is determined by the size(s) of the product(s) amplified from primers hybridizing at various distances from the element. The performance of the assay with U.S. field isolates was highly effective. When 107 field isolates were screened by the described method, there was 100% agreement with the identifications made by conventional methods. Six closely related bacteria (Agrobacterium radiobacter, Agrobacterium rhizogenes, Ochrobactrum anthropi, Rhizobium leguminosarum, Rhizobium meliloti, and Rhodospirillum rubrum) and two control bacteria (Bordetella bronchiseptica and Escherichia coli) tested negative by the assay.
                Bookmark

                Author and article information

                Journal
                Diseases of Aquatic Organisms
                Dis. Aquat. Org.
                Inter-Research Science Center
                0177-5103
                1616-1580
                February 24 2022
                February 24 2022
                : 148
                : 57-72
                Affiliations
                [1 ]Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Brookfield, IL 60513, USA
                [2 ]National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD 20910, USA
                [3 ]International Fund for Animal Welfare, Yarmouth Port, MA 02675, USA
                [4 ]Marine Mammal Pathology Services, Olney, MD 20832, USA
                [5 ]Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
                Article
                10.3354/dao03644
                31dfd3f3-6486-40b0-b80b-d2d9fc3512a5
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article