17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crude Amaryllidaceae alkaloids (AAs) extracted from Lycoris radiata are reported to exhibit significant anti-cancer activity. However, the specific alkaloids responsible for the pharmacodynamic activity and their targets still remain elusive. In this context, we strived to combine affinity ultrafiltration with topoisomerase I (Top I) as a target enzyme aiming to fish out specific bioactive AAs from Lycoris radiata. 11 AAs from Lycoris radiata were thus screened out, among which hippeastrine (peak 5) with the highest Enrichment factor (EF) against Top I exhibited good dose-dependent inhibition with IC 50 at 7.25 ± 0.20 μg/mL comparable to camptothecin (positive control) at 6.72 ± 0.23 μg/mL. The molecular docking simulation further indicated the inhibitory mechanism between Top I and hippeastrine. The in vitro antiproliferation assays finally revealed that hippeastrine strongly inhibited the proliferation of HT-29 and Hep G2 cells in an intuitive dose-dependent manner with the IC 50 values at 3.98 ± 0.29 μg/mL and 11.85 ± 0.20 μg/mL, respectively, and also induced significant cellular morphological changes, which further validated our screening method and the potent antineoplastic effects. Collectively, these results suggested that hippeastrine could be a very promising anticancer candidate for the therapy of cancer in the near future.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I.

          The ribonuclease (RNase) H class of enzymes degrades the RNA component of RNA:DNA hybrids and is important in nucleic acid metabolism. RNase H2 is specialized to remove single ribonucleotides [ribonucleoside monophosphates (rNMPs)] from duplex DNA, and its absence in budding yeast has been associated with the accumulation of deletions within short tandem repeats. Here, we demonstrate that rNMP-associated deletion formation requires the activity of Top1, a topoisomerase that relaxes supercoils by reversibly nicking duplex DNA. The reported studies extend the role of Top1 to include the processing of rNMPs in genomic DNA into irreversible single-strand breaks, an activity that can have distinct mutagenic consequences and may be relevant to human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding.

            The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ligand-dependent enhancer activation regulated by topoisomerase-I activity.

              The discovery that enhancers are regulated transcription units, encoding eRNAs, has raised new questions about the mechanisms of their activation. Here, we report an unexpected molecular mechanism that underlies ligand-dependent enhancer activation, based on DNA nicking to relieve torsional stress from eRNA synthesis. Using dihydrotestosterone (DHT)-induced binding of androgen receptor (AR) to prostate cancer cell enhancers as a model, we show rapid recruitment, within minutes, of DNA topoisomerase I (TOP1) to a large cohort of AR-regulated enhancers. Furthermore, we show that the DNA nicking activity of TOP1 is a prerequisite for robust eRNA synthesis and enhancer activation and is kinetically accompanied by the recruitment of ATR and the MRN complex, followed by additional components of DNA damage repair machinery to the AR-regulated enhancers. Together, our studies reveal a linkage between eRNA synthesis and ligand-dependent TOP1-mediated nicking-a strategy exerting quantitative effects on eRNA expression in regulating AR-bound enhancer-dependent transcriptional programs.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 December 2016
                2016
                : 6
                : 38284
                Affiliations
                [1 ]Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences , Wuhan 430074, China
                [2 ]Graduate University of Chinese Academy of Sciences , Beijing 100049, China
                [3 ]State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology , Taipa, Macau
                [4 ]Sino-Africa Joint Research Center, Chinese Academy of Sciences , Wuhan 430074, China
                Author notes
                Article
                srep38284
                10.1038/srep38284
                5138836
                27922057
                31e6ad0d-5007-4db4-ad5c-f191ed82accb
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 July 2016
                : 07 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article