2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pasteurized Orange Juice Rich in Carotenoids Protects Caenorhabditis elegans against Oxidative Stress and β-Amyloid Toxicity through Direct and Indirect Mechanisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ‘Cara Cara' is a red orange ( Citrus sinensis (L.) Osbeck) variety originally from Venezuela characterized by a significantly higher and diversified carotenoid content including higher-concentration lycopene, all-E- β-carotene, phytoene, and other carotenoids when compared with the carotenoid profile of its isogenic blond counterpart ‘Bahia', also known as Washington navel. The exceptionally high carotenoid content of ‘Cara Cara' is of special interest due to its neuroprotective potential. Here, we used the nematode Caenorhabditis elegans to analyze the antioxidant effect and the protection against β-amyloid-induced toxicity of pasteurized orange juice (POJ) obtained from ‘Cara Cara' and compare to that from ‘Bahia'. POJ treatment reduced the endogenous ROS levels and increased the worm's survival rate under normal and oxidative stress conditions. POJ treatment also upregulated the expression of antioxidant ( gcs-1, gst-4, and sod-3) and chaperonin ( hsp-16.2) genes. Remarkably, ROS reduction, gene expression activation, oxidative stress resistance, and longevity extension were significantly increased in the animals treated with ‘Cara Cara' orange juice compared to animals treated with ‘Bahia' orange juice. Furthermore, the body paralysis induced by β-amyloid peptide was delayed by both POJs but the mean paralysis time for the worms treated with ‘Cara Cara' orange juice was significantly higher compared to ‘Bahia' orange juice. Our mechanistic studies indicated that POJ-reduced ROS levels are primarily a result of the direct scavenging action of natural compounds available in the orange juice. Moreover, POJ-induced gst-4::GFP expression and –increased stress resistance was dependent of the SKN-1/Nrf2 transcription factor. Finally, the transcription factors SKN-1, DAF-16, and HSF-1 were required for the POJ-mediated protective effect against A β toxicity. Collectively, these results suggest that orange juice from ‘Cara Cara' induced a stronger response against oxidative stress and β-amyloid toxicity compared to orange juice from ‘Bahia' possibly due to its higher carotenoid content.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation.

          The genetic analysis of life span has revealed many interesting genes and pathways; however, our understanding of aging has been limited by the lack of a way to assay the aging process itself. Here we show that the tissues of aging worms have a characteristic appearance that is easy to recognize and quantify using Nomarski optics. We have used this assay to determine whether life-span mutations affect the rate of aging, to identify animals that age more rapidly than normal, and to infer the cause of death in C. elegans. Mutations that reduce insulin/IGF-1 signaling double the life span of C. elegans, and we find that tissue decline is slowed in these mutants. Thus this endocrine system appears to influence the rate at which tissues age. This effect extends even to the germline, which is the only mitotically active tissue in the adult. We find that Nomarski microscopy also allows a ready distinction between short-lived mutants that age more rapidly than normal and those that are simply sick, and we have identified an RNAi clone that confers a dramatic rapid-aging phenotype. This clone encodes the C. elegans heat-shock factor (HSF), a transcription factor that regulates the response to heat and oxidative stress. This suggests that heat-shock proteins, many of which act as chaperones, may function in normal animals to slow the rate of aging. Finally, we have identified a cause of death of C. elegans: namely, proliferating bacteria. This suggests that increased susceptibility to bacterial infections contributes to mortality in these animals, just as it does in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carotenoids: biochemistry, pharmacology and treatment.

            Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model.

              Recent studies have revealed that disruption of vitamin A signaling observed in Alzheimer's disease (AD) leads to beta-amyloid (Abeta) accumulation and memory deficits in rodents. The aim of the present study was to evaluate the therapeutic effect of all-trans retinoic acid (ATRA), an active metabolite of vitamin A, on the neuropathology and deficits of spatial learning and memory in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, a well established AD mouse model. Here we report a robust decrease in brain Abeta deposition and tau phosphorylation in the blinded study of APP/PS1 transgenic mice treated intraperitoneally for 8 weeks with ATRA (20 mg/kg, three times weekly, initiated when the mice were 5 months old). This was accompanied by a significant decrease in the APP phosphorylation and processing. The activity of cyclin-dependent kinase 5, a major kinase involved in both APP and tau phosphorylation, was markedly downregulated by ATRA treatment. The ATRA-treated APP/PS1 mice showed decreased activation of microglia and astrocytes, attenuated neuronal degeneration, and improved spatial learning and memory compared with the vehicle-treated APP/PS1 mice. These results support ATRA as an effective therapeutic agent for the prevention and treatment of AD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2019
                18 April 2019
                : 2019
                : 5046280
                Affiliations
                1Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
                2Instituto Federal de Educação, Ciência e Tecnologia do Piauí-IFPI, Brazil
                3Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
                4Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
                5Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
                Author notes

                Guest Editor: Luciana Scotti

                Author information
                http://orcid.org/0000-0002-6092-6142
                Article
                10.1155/2019/5046280
                6501168
                31178963
                31f366ae-f7d4-4423-ba0a-ed852a48f7e9
                Copyright © 2019 Ricardo Basílio de Oliveira Caland et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 October 2018
                : 28 December 2018
                : 17 January 2019
                Funding
                Funded by: Fundecitrus
                Funded by: National Center for Research Resources
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico
                Funded by: Universidade Federal do Rio Grande do Norte
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article