266
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The MADS-domain protein MPF1 of Physalis floridana controls plant architecture, seed development and flowering time

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Floral and vegetative development of plants is dependent on the combinatorial action of MADS-domain transcription factors. Members of the STMADS11 subclade, such as MPF1 of Physalis, are abundantly expressed in leaves as well as in floral organs, but their function is not yet clear. Our studies with transgenic Arabidopsis that over-express MPF1 suggest that MPF1 interacts with SOC1 to determine flowering time. However, MPF1 RNAi-mediated knockdown Physalis plants revealed a complex phenotype with changes in flowering time, plant architecture and seed size. Flowering of these plants was delayed by about 20% as compared to wild type. Expression of PFLFY is upregulated in the MPF1 RNAi lines, while PFFT and MPF3 genes are strongly repressed. MPF1 interacts with a subset of MADS-domain factors, namely with PFSOC1 in planta, and with PFSEP3 and PFFUL in yeast, supporting a regulatory role for this protein in flowering. The average size of seeds produced by the transgenic MPF1 RNAi plants is increased almost twofold. The height of these plants is also increased about twofold, but most axillary buds are stunted when compared to controls. Taken together, this suggests that members of the STMADS11 subclade act as positive regulators of flowering but have diverse functions in plant growth.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00425-009-1087-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation.

          Networks of protein interactions coordinate cellular functions. We describe a bimolecular fluorescence complementation (BiFC) assay for determination of the locations of protein interactions in living cells. This approach is based on complementation between two nonfluorescent fragments of the yellow fluorescent protein (YFP) when they are brought together by interactions between proteins fused to each fragment. BiFC analysis was used to investigate interactions among bZIP and Rel family transcription factors. Regions outside the bZIP domains determined the locations of bZIP protein interactions. The subcellular sites of protein interactions were regulated by signaling. Cross-family interactions between bZIP and Rel proteins affected their subcellular localization and modulated transcription activation. These results attest to the general applicability of the BiFC assay for studies of protein interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.

            Winter-annual ecotypes of Arabidopsis are relatively late flowering, unless the flowering of these ecotypes is promoted by exposure to cold (vernalization). This vernalization-suppressible, late-flowering phenotype results from the presence of dominant, late-flowering alleles at two loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). In this study, we report that flc null mutations result in early flowering, demonstrating that the role of active FLC alleles is to repress flowering. FLC was isolated by positional cloning and found to encode a novel MADS domain protein. The levels of FLC mRNA are regulated positively by FRI and negatively by LUMINIDEPENDENS. FLC is also negatively regulated by vernalization. Overexpression of FLC from a heterologous promoter is sufficient to delay flowering in the absence of an active FRI allele. We propose that the level of FLC activity acts through a rheostat-like mechanism to control flowering time in Arabidopsis and that modulation of FLC expression is a component of the vernalization response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The major clades of MADS-box genes and their role in the development and evolution of flowering plants.

              A. Becker (2003)
              MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants ranging from root to flower and fruit development. Sequencing of (almost) the complete Arabidopsis genome enabled the identification of (almost) all of the Arabidopsis MADS-box genes. MADS-box genes have been divided in two large groups, termed type I and type II genes. The type II genes comprise the MEF2-like genes of animals and fungi and the MIKC-type genes of plants. The majority of MIKC-type genes are of the MIKC(c)-type, which includes all plant MADS-box genes for which expression patterns or mutant phenotypes are known. By phylogeny reconstruction, almost all of the MIKC(c)-type genes can be subdivided into 12 major gene clades, each clade comprising 1-6 paralogs from Arabidopsis and putative orthologs from other seed plants. Here we first briefly describe the deep branching of the MADS-box gene tree to place the MIKC(c)-type genes into an evolutionary context. For every clade of MIKC(c)-type genes we then review what is known about its members from Arabidopsis and well-studied members from other phylogenetically informative plant species. By gene sampling and phylogeny reconstructions we provide minimal estimates for the ages of the different clades. It turns out that 7 of the 12 major gene clades, i.e., AG-, AGL6-, AGL12-, DEF+GLO- (B), GGM13- (B(s)), STMADS11- and TM3-like genes very likely existed already in the most recent common ancestor of angiosperms and gymnosperms about 300MYA. Three of the other clades, i.e., AGL2-, AGL17-, and SQUA-like genes, existed at least already in the most recent common ancestor of monocots and eudicots about 200 MYA. Only for two gene clades, AGL15-like genes (2 genes in Arabidopsis) and FLC-like genes (6 genes) members from plants other than Brassicaceae have not been reported yet. Similarly, only one ancient clade known from other flowering plant species, TM8-like genes, is not represented in Arabidopsis. These findings reveal that the diversity of MADS-box genes in Arabidopsis is rather ancient and representative for other flowering plants. Our studies may thus help to predict the set of MADS-box genes in all other flowering plants, except for relatively young paralogs. For the different gene clades we try to identify ancestral and derived gene functions and review the importance of these clades for seed plant development and evolution. We put special emphasis on gene clades for which insights into their importance has rapidly increased just recently.
                Bookmark

                Author and article information

                Contributors
                +86-10-62836085 , +86-10-62590843 , chaoying@ibcas.ac.cn
                Journal
                Planta
                Planta
                Springer-Verlag (Berlin/Heidelberg )
                0032-0935
                1432-2048
                24 December 2009
                24 December 2009
                February 2010
                : 231
                : 3
                : 767-777
                Affiliations
                [1 ]State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Nanxincun 20, 100093 Beijing, China
                [2 ]Department of Molecular Plant Genetics, Max-Planck-Institute For Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
                Article
                1087
                10.1007/s00425-009-1087-z
                2806528
                20033229
                31f6a6b7-a2dc-47d4-a530-57f93fa42ea2
                © The Author(s) 2009
                History
                : 13 October 2009
                : 4 December 2009
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag 2010

                Plant science & Botany
                plant architecture,physalis,flowering time,seed size,mads-box genes,protein–protein interaction

                Comments

                Comment on this article