11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antivirals blocking entry of enteroviruses and therapeutic potential

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Viruses from the genus Enterovirus (EV) of the Picornaviridae family are known to cause diseases such as hand foot and mouth disease (HFMD), respiratory diseases, encephalitis and myocarditis. The capsid of EV is an attractive target for the development of direct-acting small molecules that can interfere with viral entry. Some of the capsid binders have been evaluated in clinical trials but the majority have failed due to insufficient efficacy or unacceptable off-target effects. Furthermore, most of the capsid binders exhibited a low barrier to resistance. Alternatively, host-targeting inhibitors such as peptides derived from the capsid of EV that can recognize cellular receptors have been identified. However, the majority of these peptides displayed low anti-EV potency (µM range) as compared to the potency of small molecule compounds (nM range). Nonetheless, the development of anti-EV peptides is warranted as they may complement the small-molecules in a drug combination strategy to treat EVs. Lastly, structure-based approach to design antiviral peptides should be utilized to unearth potent anti-EV peptides.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Scavenger receptor B2 is a cellular receptor for enterovirus 71.

          Enterovirus 71 (EV71) belongs to human enterovirus species A of the genus Enterovirus within the family Picornaviridae. EV71, together with coxsackievirus A16 (CVA16), are most frequently associated with hand, foot and mouth disease (HFMD). Although HFMD is considered a mild exanthematous infection, infections involving EV71, but not CVA16, can progress to severe neurological disease, including fatal encephalitis, aseptic meningitis and acute flaccid paralysis. In recent years, epidemic and sporadic outbreaks of neurovirulent EV71 infections have been reported in Taiwan, Malaysia, Singapore, Japan and China. Here, we show that human scavenger receptor class B, member 2 (SCARB2, also known as lysosomal integral membrane protein II or CD36b like-2) is a receptor for EV71. EV71 binds soluble SCARB2 or cells expressing SCARB2, and the binding is inhibited by an antibody to SCARB2. Expression of human SCARB2 enables normally unsusceptible cell lines to support EV71 propagation and develop cytopathic effects. EV71 infection is hampered by the antibody to SCARB2 and soluble SCARB2. SCARB2 also supports the infection of the milder pathogen CVA16. The identification of SCARB2 as an EV71 and CVA16 receptor contributes to a better understanding of the pathogenicity of these viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions.

            Group B coxsackieviruses (CVBs) must cross the epithelium as they initiate infection, but the mechanism by which this occurs remains uncertain. The coxsackievirus and adenovirus receptor (CAR) is a component of the tight junction and is inaccessible to virus approaching from the apical surface. Many CVBs also interact with the GPI-anchored protein decay-accelerating factor (DAF). Here, we report that virus attachment to DAF on the apical cell surface activates Abl kinase, triggering Rac-dependent actin rearrangements that permit virus movement to the tight junction. Within the junction, interaction with CAR promotes conformational changes in the virus capsid that are essential for virus entry and release of viral RNA. Interaction with DAF also activates Fyn kinase, an event that is required for the phosphorylation of caveolin and transport of virus into the cell within caveolar vesicles. CVBs thus exploit DAF-mediated signaling pathways to surmount the epithelial barrier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The life cycle of non-polio enteroviruses and how to target it

              The genus Enterovirus (EV) of the family Picornaviridae includes poliovirus, coxsackieviruses, echoviruses, numbered enteroviruses and rhinoviruses. These diverse viruses cause a variety of diseases, including non-specific febrile illness, hand-foot-and-mouth disease, neonatal sepsis-like disease, encephalitis, paralysis and respiratory diseases. In recent years, several non-polio enteroviruses (NPEVs) have emerged as serious public health concerns. These include EV-A71, which has caused epidemics of hand-foot-and-mouth disease in Southeast Asia, and EV-D68, which recently caused a large outbreak of severe lower respiratory tract disease in North America. Infections with these viruses are associated with severe neurological complications. For decades, most research has focused on poliovirus, but in recent years, our knowledge of NPEVs has increased considerably. In this Review, we summarize recent insights from enterovirus research with a special emphasis on NPEVs. We discuss virion structures, host-receptor interactions, viral uncoating and the recent discovery of a universal enterovirus host factor that is involved in viral genome release. Moreover, we briefly explain the mechanisms of viral genome replication, virion assembly and virion release, and describe potential targets for antiviral therapy. We reflect on how these recent discoveries may help the development of antiviral therapies and vaccines.
                Bookmark

                Author and article information

                Contributors
                pohcl@sunway.edu.my
                Journal
                J Biomed Sci
                J Biomed Sci
                Journal of Biomedical Science
                BioMed Central (London )
                1021-7770
                1423-0127
                15 January 2021
                15 January 2021
                2021
                : 28
                : 10
                Affiliations
                GRID grid.430718.9, ISNI 0000 0001 0585 5508, Centre for Virus and Vaccine Research, , Sunway University, ; 5, Jalan Universiti, 47500 Bandar Sunway, Selangor Malaysia
                Author information
                http://orcid.org/0000-0001-8475-6291
                Article
                708
                10.1186/s12929-021-00708-8
                7811253
                33451326
                32075e17-7056-4cf4-af91-ee0909ee73ae
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 27 September 2020
                : 8 January 2021
                Funding
                Funded by: Kementerian Pendidikan Malaysia
                Award ID: FRGS/1/2018/SKK11/SYUC/03/3
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100010798, Sunway University;
                Award ID: STR-RCTR-CVVR-01-2020
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Molecular medicine
                antiviral compound,antiviral peptide,enterovirus,picornaviridae
                Molecular medicine
                antiviral compound, antiviral peptide, enterovirus, picornaviridae

                Comments

                Comment on this article