24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Arthropods in amber from the Triassic Period

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian (ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts.

          Acariformes (one of the two main lineages of Acari) represent an exceptionally diverse group of Arachnida. We performed first comprehensive phylogenetic analysis of Acariformes using sequence data from the nuclear small subunit rRNA gene (18S rDNA) and the mitochondrial cytochrome c oxidase subunit I (COI, amino acids). Our analyses confirm the monophyly of Acariformes and recognize two orders within Acariformes: Sarcoptiformes, consisting of Endeostigmata and Oribatida+Astigmata, and Trombidiformes. The data revealed the origin of Astigmata within Oribatida with the desmonomatan superfamily Crotonioidea as the source of astigmatan radiation and the sexual family Hermanniidae as the sister group, which generally supports previous morphological hypotheses. These results were found despite the strong conflict between long-branch attraction (LBA) artifacts and phylogenetic signal. It is likely that the conflict resulted from differences in the substitution rates among acariform lineages, especially comparing slowly evolving Oribatida with rapidly evolving Astigmata. The use of likelihood methods considered more resistant to LBA only slightly decreased the chance of falling into the LBA trap; the probability of recovering the origin of Astigmata within Desmonomata differs only by about 10% from that of having the long branched Astigmata and Trombidiformes either connected directly or shifted to deep parts of the tree due to outgroup attraction. Molecular dating using the rate-smoothing method PATHd8 shows that Acariformes originated c. 435 MYA and were probably among the earliest arthropods invading terrestrial habitats in late Silurian or the Lower Devonian, when the first vascular plants are thought to have arisen. Our analyses did not support the monophyly of Acari because we recovered clades Acariformes-Solifugae and Parasitiformes-Pseudoscorpionida. However, a formal revision of arachnid classification that would reflect these results must await future analyses. Copyright 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Taphonomy of insects in carbonates and amber

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Triassic climates — State of the art and perspectives

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 11 2012
                September 11 2012
                August 27 2012
                September 11 2012
                : 109
                : 37
                : 14796-14801
                Article
                10.1073/pnas.1208464109
                3443139
                22927387
                322fcd32-d9a1-43aa-aca9-c749e2c349b5
                © 2012
                History

                Comments

                Comment on this article