1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells and acellular products attenuate murine induced colitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mesenchymal stem cells (MSCs) are a well-established immunomodulatory agent which can also promote tissue repair and regeneration. Recent studies have demonstrated MSCs as a novel therapeutic for inflammatory bowel disease (IBD), a chronic idiopathic inflammatory disorder of the gastrointestinal tract. However, the precise role of MSCs in regulating immune responses is controversial, and its significance in the pathogenesis remains IBD undefined. In addition, MSCs’ acellular product, extracellular vesicles (EVs), may also play an important role in the armamentarium of therapeutics, but how EVs compare to MSCs remains unknown due to the lack of side-by-side comparative investigation. We herein compared MSCs and MSC-derived EVs for the treatment of IBD using a DSS-induced colitis model.

          Methods

          A DSS-induced colitis model was used. At day 4, mice received adipose-derived MSCs, MSC-derived EVs, or placebo. Weight loss, stool consistency, and hematochezia was charted. At day 8, murine colons were harvested, histologic analysis performed, and serum/tissue cytokine analysis conducted.

          Results

          MSCs and EVs demonstrated equivalent immunosuppressive function in DSS-treated mice through decreased colonic lymphocyte infiltration and attenuated disease severity after both MSC and EV treatment. Furthermore, both MSCs and EVs have an equivalent ability to inhibit inflammation in the DSS colitis model by inhibiting JAK, JNK 1/2, and STAT3 signaling.

          Conclusions

          These results suggest that (i) both MSCs and EVs are effective therapeutic candidates for a DSS-induced mouse colitis model, (ii) MSCs and EVs have similar immunosuppressive and anti-inflammatory functions, and (iii) EVs may present a novel future therapeutic for the treatment of IBD.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

          Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Extracellular vesicles: Exosomes, microvesicles, and friends

            Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemically induced mouse models of intestinal inflammation.

              Animal models of intestinal inflammation are indispensable for our understanding of the pathogenesis of Crohn disease and ulcerative colitis, the two major forms of inflammatory bowel disease in humans. Here, we provide protocols for establishing murine 2,4,6-trinitro benzene sulfonic acid (TNBS)-, oxazolone- and both acute and chronic dextran sodium sulfate (DSS) colitis, the most widely used chemically induced models of intestinal inflammation. In the former two models, colitis is induced by intrarectal administration of the covalently reactive reagents TNBS/oxazolone, which are believed to induce a T-cell-mediated response against hapten-modified autologous proteins/luminal antigens. In the DSS model, mice are subjected several days to drinking water supplemented with DSS, which seems to be directly toxic to colonic epithelial cells of the basal crypts. The procedures for the hapten models of colitis and acute DSS colitis can be accomplished in about 2 weeks but the protocol for chronic DSS colitis takes about 2 months.
                Bookmark

                Author and article information

                Contributors
                Lightna@ccf.org
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                30 November 2020
                30 November 2020
                2020
                : 11
                : 515
                Affiliations
                [1 ]GRID grid.239578.2, ISNI 0000 0001 0675 4725, Department of Colorectal Surgery, , Digestive Disease Surgical Institute, Cleveland Clinic, ; 9500 Euclid Ave, Cleveland, OH 44195 USA
                [2 ]GRID grid.239578.2, ISNI 0000 0001 0675 4725, Department of Inflammation and Immunity, , Lerner Research Institute, Cleveland Clinic, ; Cleveland, OH USA
                Article
                2025
                10.1186/s13287-020-02025-7
                7706051
                33256827
                325b7f11-c5fb-441f-a9a6-0cc098dd0070
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 31 August 2020
                : 12 November 2020
                Funding
                Funded by: BI-MSC
                Award ID: MSC2018003
                Funded by: FundRef http://dx.doi.org/10.13039/100009576, Kenneth Rainin Foundation;
                Award ID: 2020-1412
                Award ID: 2020-1412
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Molecular medicine
                mesenchymal stem cells,extracellular vesicles,inflammatory bowel disease,murine colitis model,therapy

                Comments

                Comment on this article