15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Novel Methods in Vascular and Lymphatic Physiology

      Submit here before June 30, 2025

      About Journal of Vascular Research: 1.8 Impact Factor I 3.4 CiteScore I 0.486 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Cyclic-GMP-Mediated Decrease in Permeability of Human Umbilical and Pulmonary Artery Endothelial Cell Monolayers

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial cell contraction plays a pivotal role in the increased extravasation of fluid and macromolecules in vascular leakage. Previous studies have indicated that elevation of the adenosine 3’,5’-cyclic monophosphate (cAMP) concentration can improve the endothelial barrier function. In analogy with smooth muscle cell contraction, which is inhibited by both cAMP and guanosine 3’,5’-cyclic monophosphate (cGMP), we have compared the role of cAMP and cGMP in the regulation of the permeability of human endothelial cell monolayers. The cellular cGMP concentration was elevated 3- to 5-fold after addition of 10<sup>–7</sup> M atrial natriuretic peptide (ANP) or 10<sup>-4</sup> M sodium nitroprusside (SNP), both under basal and thrombin-stimulated conditions. After exposure to thrombin, cGMP generation by ANP or SNP or addition of 8-bromo-cGMP significantly suppressed the increase in permeability. Inhibition of nitric oxide production with 10<sup>–4</sup> M N<sup>G</sup>-nitro-L-arginine methyl ester increased the permeability of endothelial monolayers in the majority of the tested cultures, an effect that could be counteracted by addition of 8-bromo-cGMP or ANP. An increase of cAMP upon the addition of forskolin reduced the permeability in all endothelial cell strains under basal conditions and after exposure to thrombin. The forskolin- and 8-bromo-cGMP-mediated decreases in permeability were accompanied by increases in transendothehal electrical resistance. These in vitro data indicate that, in addition to cAMP, cGMP can act as a potent fine-regulator of endothelial permeability.

          Related collections

          Author and article information

          Journal
          JVR
          J Vasc Res
          10.1159/issn.1018-1172
          Journal of Vascular Research
          S. Karger AG
          1018-1172
          1423-0135
          1994
          1994
          23 September 2008
          : 31
          : 1
          : 42-51
          Affiliations
          aGaubius Laboratory, IWO-TNO, and bDepartment of General Internal Medicine, University Hospital Leiden, Leiden, The Netherlands
          Article
          159030 J Vasc Res 1994;31:42–51
          10.1159/000159030
          7903872
          3264da85-8ce2-4107-8642-c450271492c4
          © 1994 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          History
          : 14 June 1993
          : 23 August 1993
          Page count
          Pages: 10
          Categories
          Research Paper

          General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
          Cyclic AMP,Transendothehal electrical resistance,Thrombin,Nitric oxide

          Comments

          Comment on this article